The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Identification of the 9-aminoacridine/DNA complex responsible for photodynamic inactivation of P22.

Acridine dyes bound to the condensed DNA within phage particles sensitize them to inactivation by visible light. The mechanism involves absorption of photons by an acridine/DNA complex, generating singlet oxygen, which covalently damages nearby proteins needed for DNA injection [Bryant, J., & King, J. (1985) J. Mol. Biol. 180, 837-863]. Acridines and related dyes interact with double-stranded DNA through a number of binding modes. To determine in condensed phage DNA the binding mode responsible for this inactivation, we have studied the formation of the DNA/acridine target complexes for photoinactivation. Analysis of the kinetics of 9-aminoacridine binding to Salmonella phage P22 particles revealed the formation of two binding species, one of which appeared more rapidly and was apparently an intermediate in the formation of the second. The rapidly forming species represented DNA sites with intercalated acridines, while the more slowly forming species represented the subsequent binding of additional acridine molecules to the DNA backbone of sites already containing intercalated dye. The rates of photoinactivation correlated with the rate of binding of 9-aminoacridine to the DNA backbone. This suggests that the most effective species for sensitizing phage to light-induced damage has acridine molecules stacked alongside the backbone of a region with intercalated molecules.[1]

References

 
WikiGenes - Universities