The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Covalent structure of biodegradative threonine dehydratase of Escherichia coli: homology with other dehydratases.

The 987-base-pair coding region of the tdc gene of Escherichia coli K-12 encoding biodegradative threonine dehydratase [Tdc; L-threonine hydro-lyase (deaminating), EC 4.2.1.16], previously cloned in this laboratory, was sequenced. The deduced polypeptide consists of 329 amino acid residues with a calculated Mr of 35,238. Although the purified enzyme was shown to contain tryptophan, no tryptophan codon was found in the tdc reading frame. Incubation of purified Tdc with [14C]tryptophan revealed apparent "covalent" binding of tryptophan, indicating posttranslational modification of the enzyme. A heptapeptide, 54Thr-55Gly-56Ser-57Phe-58Lys-59Ile- 60Arg, was found to contain Lys-58, which binds pyridoxal phosphate coenzyme. A comparison of amino acid sequences between the Tdc polypeptide and the biosynthetic threonine dehydratases of yeast (encoded by ILV1) and E. coli (encoded by ilvA) and the E. coli D-serine dehydratase (DsdA, encoded by dsdA) revealed various extents of homology: five domains of the Tdc polypeptide were 63-93% homologous with the yeast enzyme, and three of these same regions were 80% homologous with the biosynthetic E. coli dehydratase; two different domains showed 67% and 83% homology with DsdA. In addition, two other sequences were highly conserved in all four proteins, one of which was shown to contain the conserved lysine residue that binds pyridoxal phosphate in the Tdc and DsdA polypeptides. These observations suggest that, despite their diverse origin and metabolic significance, these enzymes may have evolved from a common ancestral protein.[1]

References

  1. Covalent structure of biodegradative threonine dehydratase of Escherichia coli: homology with other dehydratases. Datta, P., Goss, T.J., Omnaas, J.R., Patil, R.V. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
 
WikiGenes - Universities