Increased insulin mediated glucose metabolism in fat cells from I versus C57BL mice.
The purpose of this study was to determine whether adipocytes from I strain mice, which are characterized by a greater in vivo glucose tolerance than most other strains, had a higher capacity to utilize glucose in response to physiological concentrations of insulin. Using C57BL mice as a control strain, we examined the effect of insulin on glucose metabolism in epididymal and inguinal adipocytes from 2-month-old male mice. Body weight was only slightly less (7%) for the I mice than for the C57BL mice, but fat pad sizes were 60 and 20% less for epididymal and inguinal depots, respectively, in the I mice. Fat cell size was also smaller in epididymal adipocytes from the I mice than from the C57BL mice. Fat cell size of inguinal adipocytes was similar in the two strains. Without insulin the rates of [U-14C]glucose incorporation into CO2 or lipids were twofold higher in cells from the I mice than in those from the C57BL mice. Maximal insulin concentration (2.5 nM) increased glucose metabolism by 140 and 500% in epididymal and inguinal adipose cells, respectively, in the I mice versus 30 and 50% in the C57BL mice. The maximal effect of insulin was reached at a much higher insulin concentration in the I mice than in the C57BL mice. The activity of fatty acid synthetase was four- to sixfold higher in fat cells from I than in those from C57BL mice. These results demonstrate an increased insulin responsiveness of glucose metabolism in fat cells from the I mice related to an increased lipogenic capacity. Furthermore, they show that adipose tissue in mice exhibits significant regional differences in terms of insulin responsiveness of glucose metabolism.[1]References
- Increased insulin mediated glucose metabolism in fat cells from I versus C57BL mice. Hoover-Plow, J., Guerre-Millo, M., Lavau, M. Proc. Soc. Exp. Biol. Med. (1987) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg