The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Ribozyme inhibitors: deoxyguanosine and dideoxyguanosine are competitive inhibitors of self-splicing of the Tetrahymena ribosomal ribonucleic acid precursor.

The intervening sequence (IVS) of the Tetrahymena rRNA precursor catalyzes its own splicing. During splicing the 3'-hydroxyl of guanosine is ligated to the 5' terminus of the IVS. One catalytic strategy of the IVS RNA is to specifically bind its guanosine substrate. Deoxyguanosine (dG) and dideoxyguanosine (ddG) are found to be competitive inhibitors of self-splicing. Comparison of the kinetic parameters (Ki = 1.1 mM for dG; Ki = 5.4 mM for ddG; Km = 0.032 mM for guanosine) indicates that the ribose hydroxyls are necessary for optimal binding of guanosine to the RNA. dG is not a substrate for the reaction even at very high concentrations. Thus, in addition to aiding in binding, the 2'-hydroxyl is necessary for reaction of the 3'-hydroxyl. A second catalytic strategy of the IVS RNA is to enhance the reactivity of specific bonds. For example, the phosphodiester bond at the 3' splice site is extremely labile to hydrolysis. We find that dG and ddG, as well as 2'-O-methylguanosine and 3'-O-methylguanosine, reduce hydrolysis at the 3' splice site. These data are consistent with an RNA structure that brings the 5' and 3' splice sites proximal to the guanosine binding site.[1]

References

 
WikiGenes - Universities