The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Tetrahymena

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Tetrahymena

 

High impact information on Tetrahymena

 

Chemical compound and disease context of Tetrahymena

 

Biological context of Tetrahymena

 

Anatomical context of Tetrahymena

 

Associations of Tetrahymena with chemical compounds

  • Tetrahymena thermophila cells transferred from growth medium into a dilute salt (starvation) medium shortly (approximately 6-8 hrs) become more resistant to the in vivo inhibitory effects of the antibiotics cycloheximide, tetracycline and emetine [25].
  • Efficient UV-induced cross-links are observed in Oxy-4 and the related sequence from Tetrahymena (d(T2G4)4 = Tet-4), and join thymidine residues in different repeats [26].
  • We report here experiments which show that the ciliate Tetrahymena thermophila (formerly T. pyriformis, syngen 1) is sensitive to the paromamine-containing aminoglycoside antibiotics [27].
  • Thus although it was shown twenty years ago that the isotope label from [14C]glucose or from [32P]phosphoenolpyruvate is incorporated into 2-aminoethylphosphonate by the protozoan Tetrahymena pyriformis, the presumed stoichiometric transformation of phosphoenolpyruvate to phosphonopyruvate has never been demonstrated [28].
  • Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide [29].
 

Gene context of Tetrahymena

 

Analytical, diagnostic and therapeutic context of Tetrahymena

References

  1. The Tetrahymena rRNA intron self-splices in E. coli: in vivo evidence for the importance of key base-paired regions of RNA for RNA enzyme function. Waring, R.B., Ray, J.A., Edwards, S.W., Scazzocchio, C., Davies, R.W. Cell (1985) [Pubmed]
  2. Joining the two domains of a group I ribozyme to form the catalytic core. Tanner, M.A., Cech, T.R. Science (1997) [Pubmed]
  3. RNA folds: insights from recent crystal structures. Ferré-D'Amaré, A.R., Doudna, J.A. Annual review of biophysics and biomolecular structure. (1999) [Pubmed]
  4. Viroids and virusoids are related to group I introns. Dinter-Gottlieb, G. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  5. Specific metal-ion binding sites in a model of the P4-P6 triple-helical domain of a group I intron. Lindqvist, M., Sandström, K., Liepins, V., Strömberg, R., Gräslund, A. RNA (2001) [Pubmed]
  6. Methylation of histone h3 at lysine 9 targets programmed DNA elimination in tetrahymena. Taverna, S.D., Coyne, R.S., Allis, C.D. Cell (2002) [Pubmed]
  7. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Hsu, J.Y., Sun, Z.W., Li, X., Reuben, M., Tatchell, K., Bishop, D.K., Grushcow, J.M., Brame, C.J., Caldwell, J.A., Hunt, D.F., Lin, R., Smith, M.M., Allis, C.D. Cell (2000) [Pubmed]
  8. TLP1: a gene encoding a protein component of mammalian telomerase is a novel member of WD repeats family. Nakayama, J., Saito, M., Nakamura, H., Matsuura, A., Ishikawa, F. Cell (1997) [Pubmed]
  9. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Brownell, J.E., Zhou, J., Ranalli, T., Kobayashi, R., Edmondson, D.G., Roth, S.Y., Allis, C.D. Cell (1996) [Pubmed]
  10. Linker histone H1 regulates specific gene expression but not global transcription in vivo. Shen, X., Gorovsky, M.A. Cell (1996) [Pubmed]
  11. Catalysis of RNA cleavage by a ribozyme derived from the group I intron of Anabaena pre-tRNA(Leu). Zaug, A.J., Dávila-Aponte, J.A., Cech, T.R. Biochemistry (1994) [Pubmed]
  12. Phosphonate biosynthesis: molecular cloning of the gene for phosphoenolpyruvate mutase from Tetrahymena pyriformis and overexpression of the gene product in Escherichia coli. Seidel, H.M., Pompliano, D.L., Knowles, J.R. Biochemistry (1992) [Pubmed]
  13. A flower senescence-related mRNA from carnation encodes a novel protein related to enzymes involved in phosphonate biosynthesis. Wang, H., Brandt, A.S., Woodson, W.R. Plant Mol. Biol. (1993) [Pubmed]
  14. Quantitative structure--toxicity relationships using TOPS-MODE. 1. Nitrobenzene toxicity to Tetrahymena pyriformis. Estrada, E., Uriarte, E. SAR and QSAR in environmental research. (2001) [Pubmed]
  15. Storage of milk powders under adverse conditions. I. Losses of lysine and of other essential amino acids as determined by chemical and microbiological methods. Hurrell, R.F., Finot, P.A., Ford, J.E. Br. J. Nutr. (1983) [Pubmed]
  16. Reverse self-splicing of group II intron RNAs in vitro. Augustin, S., Müller, M.W., Schweyen, R.J. Nature (1990) [Pubmed]
  17. The guanosine binding site of the Tetrahymena ribozyme. Michel, F., Hanna, M., Green, R., Bartel, D.P., Szostak, J.W. Nature (1989) [Pubmed]
  18. Telomeric repeat from T. thermophila cross hybridizes with human telomeres. Allshire, R.C., Gosden, J.R., Cross, S.H., Cranston, G., Rout, D., Sugawara, N., Szostak, J.W., Fantes, P.A., Hastie, N.D. Nature (1988) [Pubmed]
  19. Sequence of a ribosomal RNA gene intron from Tetrahymena. Wild, M.A., Sommer, R. Nature (1980) [Pubmed]
  20. Metal ion catalysis during splicing of premessenger RNA. Sontheimer, E.J., Sun, S., Piccirilli, J.A. Nature (1997) [Pubmed]
  21. The anticodon is the signal sequence for mitochondrial import of glutamine tRNA in Tetrahymena. Rusconi, C.P., Cech, T.R. Genes Dev. (1996) [Pubmed]
  22. Immunofluorescence evidence for the absence of histone H1 in a mitotically dividing, genetically inactive nucleus. Johmann, C.A., Gorovsky, M.A. J. Cell Biol. (1976) [Pubmed]
  23. Fractionation of Tetrahymena ciliary membranes with triton X-114 and the identification of a ciliary membrane ATPase. Dentler, W.L. J. Cell Biol. (1988) [Pubmed]
  24. Enzymatic reduction of protein-bound methionine sulfoxide. Brot, N., Weissbach, L., Werth, J., Weissbach, H. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  25. Regulation of ribosome phosphorylation and antibiotic sensitivity in Tetrahymena thermophila: A correlation. Hallberg, R.L., Wilson, P.G., Sutton, C. Cell (1981) [Pubmed]
  26. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Williamson, J.R., Raghuraman, M.K., Cech, T.R. Cell (1989) [Pubmed]
  27. Mistranslation in a eucaryotic organism. Palmer, E., Wilhelm, J.M. Cell (1978) [Pubmed]
  28. Phosphonate biosynthesis: isolation of the enzyme responsible for the formation of a carbon-phosphorus bond. Seidel, H.M., Freeman, S., Seto, H., Knowles, J.R. Nature (1988) [Pubmed]
  29. Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide. Rojas, J.R., Trievel, R.C., Zhou, J., Mo, Y., Li, X., Berger, S.L., Allis, C.D., Marmorstein, R. Nature (1999) [Pubmed]
  30. Template definition by Tetrahymena telomerase reverse transcriptase. Miller, M.C., Liu, J.K., Collins, K. EMBO J. (2000) [Pubmed]
  31. Expression profile of the putative catalytic subunit of the telomerase gene. Ramakrishnan, S., Eppenberger, U., Mueller, H., Shinkai, Y., Narayanan, R. Cancer Res. (1998) [Pubmed]
  32. Modulating acetyl-CoA binding in the GCN5 family of histone acetyltransferases. Langer, M.R., Fry, C.J., Peterson, C.L., Denu, J.M. J. Biol. Chem. (2002) [Pubmed]
  33. A conjugation-specific gene (cnjC) from Tetrahymena encodes a protein homologous to yeast RNA polymerase subunits (RPB3, RPC40) and similar to a portion of the prokaryotic RNA polymerase alpha subunit (rpoA). Martindale, D.W. Nucleic Acids Res. (1990) [Pubmed]
  34. The yeast telomere length regulator TEL2 encodes a protein that binds to telomeric DNA. Kota, R.S., Runge, K.W. Nucleic Acids Res. (1998) [Pubmed]
  35. A second catalytic metal ion in group I ribozyme. Weinstein, L.B., Jones, B.C., Cosstick, R., Cech, T.R. Nature (1997) [Pubmed]
  36. Differential use of termination codons in ciliated protozoa. Harper, D.S., Jahn, C.L. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  37. Monovalent cations mediate formation of native tertiary structure of the Tetrahymena thermophila ribozyme. Takamoto, K., He, Q., Morris, S., Chance, M.R., Brenowitz, M. Nat. Struct. Biol. (2002) [Pubmed]
  38. Tetrahymena telomerase is active as a monomer. Bryan, T.M., Goodrich, K.J., Cech, T.R. Mol. Biol. Cell (2003) [Pubmed]
  39. Crystals by design: a strategy for crystallization of a ribozyme derived from the Tetrahymena group I intron. Golden, B.L., Podell, E.R., Gooding, A.R., Cech, T.R. J. Mol. Biol. (1997) [Pubmed]
 
WikiGenes - Universities