The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Turnover of phospholipid fatty acyl chains in cultured neuroblastoma cells: involvement of deacylation-reacylation and de novo synthesis in plasma membranes.

Cultured neuroblastoma cells (NIE-115) rapidly incorporated the essential fatty acid, linoleic acid (18:2 (n = 6), into membrane phospholipids. Fatty acid label appeared rapidly (2-10 min) in plasma membrane phospholipids without evidence of an initial lag. Specific activity (nmol fatty acid/mumol phospholipid) was 1.5-2-fold higher in microsomes than in plasma membrane. In these membrane fractions phosphatidylcholine had at least 2-fold higher specific activity than other phospholipids. With 32P as radioactive precursor, the specific activity of phosphatidylinositol was 2-fold higher compared to other phospholipids in both plasma membrane and microsomes. Thus a differential turnover of fatty acyl and head group moieties of both phospholipids was suggested. This was confirmed in dual-label (3H fatty acid and 32P), pulse-chase studies that showed a relatively rapid loss of fatty acyl chains compared to the head group of phosphatidylcholine; the opposite occurred with phosphatidylinositol. A high loss of fatty acyl chain relative to phosphorus indicated involvement of deacylation-reacylation in fatty acyl chain turnover. The patterns of label loss in pulse-chase experiments at 37 and 10 degrees C indicated some independent synthesis and modification of plasma membrane phospholipids at the plasma membrane. Lysophosphatidylcholine acyltransferase and choline phosphotransferase activities were demonstrated in isolated plasma membrane in vitro. Thus, studies with intact cells and with isolated membrane fractions suggested that neuroblastoma plasma membranes possess enzyme activities capable of altering phospholipid fatty acyl chain composition by deacylation-reacylation and de novo synthesis at the plasma membrane itself.[1]


WikiGenes - Universities