The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

p-Nitrophenyl and cholesteryl-N-alkyl carbamates as inhibitors of cholesterol esterase.

p-Nitrophenyl and cholesteryl-N-alkyl carbamates are good inhibitors of porcine pancreatic cholesterol esterase-catalyzed hydrolysis of p-nitrophenyl butyrate. p-Nitrophenyl-N-butyl and N-octyl carbamates (compounds 1 and 2, respectively) are potent active site-directed irreversible inhibitors of this enzyme. The inhibition of cholesterol esterase by compound 1 or 2 shows saturation kinetics with increasing inhibitor concentration. The activity of cholesterol esterase in the presence of compound 1 or 2 can be protected by the competitive inhibitor, phenylboronic acid. First-order decreases in cholesterol esterase activity effected by compound 1 or 2 are also observed in the presence of taurocholate/phosphatidylcholine micelles. Dilution of the inhibited enzyme results in a gradual return of activity, the rate of which is increased in the presence of the nucleophile hydroxylamine. Hence, inhibition of cholesterol esterase-catalyzed hydrolysis of p-nitrophenyl butyrate by compound 1 or 2 in the aqueous or micellar phase occurs via a carbamyl-cholesterol esterase mechanism. The turnover of the butyl carbamylenzyme is increased in the presence of micelles, which indicates that the micelles have a direct effect on the catalytic activity of the enzyme. However, this effect is dependent on the structure of the substrate as the turnover of the octyl carbamylenzyme is unaffected in the presence of micelles. A comparison of the second-order rate constants for the inhibition of cholesterol esterase by compound 1 or 2 indicates that the octyl derivative is the more potent inhibitor. Cholesteryl-N-alkyl carbamates do not carbamylate cholesterol esterase but instead act as reversible inhibitors. This is due to the stability of cholesteryl carbamates relative to p-nitrophenyl carbamates.[1]

References

  1. p-Nitrophenyl and cholesteryl-N-alkyl carbamates as inhibitors of cholesterol esterase. Hosie, L., Sutton, L.D., Quinn, D.M. J. Biol. Chem. (1987) [Pubmed]
 
WikiGenes - Universities