The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Incomplete X chromosome dosage compensation in chorionic villi of human placenta.

Studies of glucose-6-phosphate dehydrogenase (G6PD) in heterozygous cells from chorionic villi of five fetal and one newborn placenta show that the locus on the allocyclic X is expressed in many cells of this trophectoderm derivative. Heterodimers were present in clonal populations of cells with normal diploid karyotype and a late replicating X chromosome. The expression of the two X chromosomes was unequal, based on ratios of homodimers and heterodimers in clones. Studies of DNA, digested with Hpa II and probed with cloned genomic G6PD sequences, indicate that expression of the locus in chorionic villi is associated with hypomethylation of 3' CpG clusters. These findings suggest that dosage compensation, at least at the G6PD locus, has not been well established or maintained (or both) in placental tissue. Furthermore, the active X chromosome in these human cells of trophoblastic origin can be either the paternal or maternal one; therefore, paternal X inactivation in extraembryonic lineages is not an essential feature of mammalian X dosage compensation.[1]

References

  1. Incomplete X chromosome dosage compensation in chorionic villi of human placenta. Migeon, B.R., Wolf, S.F., Axelman, J., Kaslow, D.C., Schmidt, M. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
 
WikiGenes - Universities