The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

G6PD  -  glucose-6-phosphate dehydrogenase

Homo sapiens

Synonyms: G6PD1, Glucose-6-phosphate 1-dehydrogenase
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of G6PD


Psychiatry related information on G6PD


High impact information on G6PD


Chemical compound and disease context of G6PD


Biological context of G6PD

  • DNA sequences of the X-chromosome-linked hypoxanthine phosphoribosyltransferase (HPRT) and glucose 6-phosphate dehydrogenase (G6PD) genes have revealed the presence of clusters of CpG dinucleotides, raising the possibility that such clusters are involved in the control of expression of these genes, which are expressed in all tissues [19].
  • Among unusual findings were the ME2 1 plus 2 phenotype determined for two bladder tumor lines, a G6PD A phenotype found in a line of Caucasian origin determined not to be a HeLa contaminant, and asymmetrical heterozygous phenotypes in several lines [20].
  • We reported two specific, reproducible, and quantitative clonality assays based on detection of exonic polymorphisms of the X chromosome genes p55 and G6PD using rtPCR-LDR [21].
  • This study sought to develop a simple, reproducible assay, practical for screening genomic DNA samples for p55/G6PD genotypes, rapid clonality determination, and to determine the linkage relationship between these closely related loci [21].
  • The G6PD gene is 18 kb long and consists of 13 exons: the protein-coding region is divided into 12 segments ranging in size from 12 to 236 bp; an intron is present in the 5' untranslated region [22].

Anatomical context of G6PD


Associations of G6PD with chemical compounds

  • In the subgroup of homozygous variation, the serum bilirubin value was significantly higher for G6PD-deficient neonates than for controls [1].
  • To clarify the nature of this selective pressure, we studied how G6PD activity and other parameters in a model of the NADPH redox cycle affect metabolic performance [4].
  • At position 33 guanine was found in all G6PD A(-) samples and seven G6PD B(+) control samples and is, presumably, the usual nucleotide found at this position [25].
  • In cultured skin fibroblasts, G6PD activity was approximately 15% of normal, with 4- to 5-fold increased Michaelis constant (Km) for NADP and for glucose 6-phosphate [26].
  • Since the intracellular concentrations of G6P and NADP+ are below their KmS for G6PD, these data suggest that high concentrations of pyrimidine 5'-nucleotides depress pentose phosphate shunt activity in pyrimidin 5'-nucleotidase deficiency [14].
  • Aldosterone decreased G6PD expression by increasing expression of the cyclic AMP-response element modulator (CREM) to inhibit cyclic AMP-response element binding protein (CREB)-mediated G6PD transcription [27].

Physical interactions of G6PD


Enzymatic interactions of G6PD


Regulatory relationships of G6PD


Other interactions of G6PD

  • The human mRNA that provides the N-terminus of chimeric G6PD encodes GMP reductase [40].
  • METHODS: The full sequence of the UGT1A1 gene was identified for 212 G6PD-deficient and 232 control male neonates by using polymerase chain reaction (PCR) [1].
  • We studied nine bipolar pedigrees (in which there was no male-to-male transmission) in an attempt to detect linkage, using three tightly linked polymorphic DNA loci, DXS15, DXS52 and F8C (factor 8 gene), all of which are closely linked to the CB and glucose 6-phosphate dehydrogenase classic Xq28 markers [41].
  • Further evidence suggests a gene order on the X long arm of centromere-PGK-HPRT-G6PD [42].
  • Therefore, in the rec(X) X chromosome inactivation has spread through STS and MIC2 leaving these loci unaffected and has inactivated G6PD in the absence of an inactivation center in the q26.3----qter region of the human X chromosome [43].

Analytical, diagnostic and therapeutic context of G6PD


  1. Glucose-6-phosphate dehydrogenase deficiency, the UDP-glucuronosyl transferase 1A1 gene, and neonatal hyperbilirubinemia. Huang, C.S., Chang, P.F., Huang, M.J., Chen, E.S., Chen, W.C. Gastroenterology (2002) [Pubmed]
  2. Diverse point mutations in the human glucose-6-phosphate dehydrogenase gene cause enzyme deficiency and mild or severe hemolytic anemia. Vulliamy, T.J., D'Urso, M., Battistuzzi, G., Estrada, M., Foulkes, N.S., Martini, G., Calabro, V., Poggi, V., Giordano, R., Town, M. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  3. Multiple glucose 6-phosphate dehydrogenase-deficient variants correlate with malaria endemicity in the Vanuatu archipelago (southwestern Pacific). Ganczakowski, M., Town, M., Bowden, D.K., Vulliamy, T.J., Kaneko, A., Clegg, J.B., Weatherall, D.J., Luzzatto, L. Am. J. Hum. Genet. (1995) [Pubmed]
  4. Quantitative evolutionary design of glucose 6-phosphate dehydrogenase expression in human erythrocytes. Salvador, A., Savageau, M.A. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  5. Evidence of an oxidative challenge in the Alzheimer's brain. Balazs, L., Leon, M. Neurochem. Res. (1994) [Pubmed]
  6. Altered methylation pattern of the G6 PD promoter in Rett syndrome. Huppke, P., Bohlander, S., Krämer, N., Laccone, F., Hanefeld, F. Neuropediatrics. (2002) [Pubmed]
  7. Mental retardation in heterozygotes for the fragile-X mutation: evidence in favor of an X inactivation-dependent effect. Rocchi, M., Archidiacono, N., Rinaldi, A., Filippi, G., Bartolucci, G., Fancello, G.S., Siniscalco, M. Am. J. Hum. Genet. (1990) [Pubmed]
  8. Evidence against close linkage of unipolar affective illness to human chromosome 11p markers HRAS1 and INS and chromosome Xq marker DXS52. Neiswanger, K., Slaugenhaupt, S.A., Hughes, H.B., Frank, E., Frankel, D.R., McCarty, M.J., Chakravarti, A., Zubenko, G.S., Kupfer, D.J., Kaplan, B.B. Biol. Psychiatry (1990) [Pubmed]
  9. Mutations in the genes encoding 11beta-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase interact to cause cortisone reductase deficiency. Draper, N., Walker, E.A., Bujalska, I.J., Tomlinson, J.W., Chalder, S.M., Arlt, W., Lavery, G.G., Bedendo, O., Ray, D.W., Laing, I., Malunowicz, E., White, P.C., Hewison, M., Mason, P.J., Connell, J.M., Shackleton, C.H., Stewart, P.M. Nat. Genet. (2003) [Pubmed]
  10. Pyruvate kinase deficiency in mice protects against malaria. Min-Oo, G., Fortin, A., Tam, M.F., Nantel, A., Stevenson, M.M., Gros, P. Nat. Genet. (2003) [Pubmed]
  11. Diminished support for linkage between manic depressive illness and X-chromosome markers in three Israeli pedigrees. Baron, M., Freimer, N.F., Risch, N., Lerer, B., Alexander, J.R., Straub, R.E., Asokan, S., Das, K., Peterson, A., Amos, J. Nat. Genet. (1993) [Pubmed]
  12. Mutations in the vasopressin type 2 receptor gene (AVPR2) associated with nephrogenic diabetes insipidus. van den Ouweland, A.M., Dreesen, J.C., Verdijk, M., Knoers, N.V., Monnens, L.A., Rocchi, M., van Oost, B.A. Nat. Genet. (1992) [Pubmed]
  13. More on the association of glucose-6-phosphate dehydrogenase deficiency with hairy-cell leukemia. Beutler, E., Kuhl, W., Gilsanz, F., Toscano, R.M. N. Engl. J. Med. (1991) [Pubmed]
  14. Hemolytic anemia in hereditary pyrimidine 5'-nucleotidase deficiency: nucleotide inhibition of G6PD and the pentose phosphate shunt. Tomoda, A., Noble, N.A., Lachant, N.A., Tanaka, K.R. Blood (1982) [Pubmed]
  15. Active involvement of catalase during hemolytic crises of favism. Gaetani, G.F., Rolfo, M., Arena, S., Mangerini, R., Meloni, G.F., Ferraris, A.M. Blood (1996) [Pubmed]
  16. Glucose-6-phosphate dehydrogenase deficiency and the inflammatory response to endotoxin and polymicrobial sepsis. Wilmanski, J., Villanueva, E., Deitch, E.A., Spolarics, Z. Crit. Care Med. (2007) [Pubmed]
  17. Human glucose-6-phosphate dehydrogenase: the crystal structure reveals a structural NADP(+) molecule and provides insights into enzyme deficiency. Au, S.W., Gover, S., Lam, V.M., Adams, M.J. Structure (2000) [Pubmed]
  18. Molecular aspects of erythroenzymopathies associated with hereditary hemolytic anemia. Miwa, S., Fujii, H. Am. J. Hematol. (1985) [Pubmed]
  19. Clusters of CpG dinucleotides implicated by nuclease hypersensitivity as control elements of housekeeping genes. Wolf, S.F., Migeon, B.R. Nature (1985) [Pubmed]
  20. Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis. Wright, W.C., Daniels, W.P., Fogh, J. J. Natl. Cancer Inst. (1981) [Pubmed]
  21. Rapid determination of clonality by detection of two closely-linked X chromosome exonic polymorphisms using allele-specific PCR. Liu, Y., Phelan, J., Go, R.C., Prchal, J.F., Prchal, J.T. J. Clin. Invest. (1997) [Pubmed]
  22. Structural analysis of the X-linked gene encoding human glucose 6-phosphate dehydrogenase. Martini, G., Toniolo, D., Vulliamy, T., Luzzatto, L., Dono, R., Viglietto, G., Paonessa, G., D'Urso, M., Persico, M.G. EMBO J. (1986) [Pubmed]
  23. Alternative splicing of human glucose-6-phosphate dehydrogenase messenger RNA in different tissues. Hirono, A., Beutler, E. J. Clin. Invest. (1989) [Pubmed]
  24. Localization of loci for hypoxanthine phosphoribosyltransferase and glucose-6-phosphate dehydrogenase and biochemical evidence of nonrandom X chromosome expression from studies of a human X-autosome translocation. Pai, G.S., Sprenkle, J.A., Do, T.T., Mareni, C.E., Migeon, B.R. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  25. Molecular cloning and nucleotide sequence of cDNA for human glucose-6-phosphate dehydrogenase variant A(-). Hirono, A., Beutler, E. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  26. Molecular basis and enzymatic properties of glucose 6-phosphate dehydrogenase volendam, leading to chronic nonspherocytic anemia, granulocyte dysfunction, and increased susceptibility to infections. Roos, D., van Zwieten, R., Wijnen, J.T., Gómez-Gallego, F., de Boer, M., Stevens, D., Pronk-Admiraal, C.J., de Rijk, T., van Noorden, C.J., Weening, R.S., Vulliamy, T.J., Ploem, J.E., Mason, P.J., Bautista, J.M., Khan, P.M., Beutler, E. Blood (1999) [Pubmed]
  27. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Leopold, J.A., Dam, A., Maron, B.A., Scribner, A.W., Liao, R., Handy, D.E., Stanton, R.C., Pitt, B., Loscalzo, J. Nat. Med. (2007) [Pubmed]
  28. Gaucher disease. III. Substrate specificity of glucocerebrosidase and the use of nonlabeled natural substrates for the investigation of patients. Choy, F.Y., Davidson, R.G. Am. J. Hum. Genet. (1980) [Pubmed]
  29. Transaldolase is part of a supramolecular complex containing glucose-6-phosphate dehydrogenase in human neutrophils that undergoes retrograde trafficking during pregnancy. Huang, J.B., Espinoza, J., Romero, R., Petty, H.R. Metab. Clin. Exp. (2005) [Pubmed]
  30. Enzymatic assay of magnesium through glucokinase activation. Fossati, P., Sirtoli, M., Tarenghi, G., Giachetti, M., Berti, G. Clin. Chem. (1989) [Pubmed]
  31. Human erythrocyte glucose 6-phosphate dehydrogenase. Evidence for competitive binding of NADP and NADPH. Morelli, A., Benatti, U., Giuliano, F., De Flora, A. Biochem. Biophys. Res. Commun. (1976) [Pubmed]
  32. Haemoglobin, serum iron, transferrin, ferritin concentrations and total iron-binding capacity in erythrocyte glucose-6-phosphate dehydrogenase deficiency. Wong, C.T., Saha, N. Tropical and geographical medicine. (1987) [Pubmed]
  33. Severe hemophilia A in a female by cryptic translocation: order and orientation of factor VIII within Xq28. Migeon, B.R., McGinniss, M.J., Antonarakis, S.E., Axelman, J., Stasiowski, B.A., Youssoufian, H., Kearns, W.G., Chung, A., Pearson, P.L., Kazazian, H.H. Genomics (1993) [Pubmed]
  34. Perspectives on hydrogen peroxide and drug-induced hemolytic anemia in glucose-6-phosphate dehydrogenase deficiency. Hochstein, P. Free Radic. Biol. Med. (1988) [Pubmed]
  35. Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Mohandas, T., Sparkes, R.S., Shapiro, L.J. Science (1981) [Pubmed]
  36. Synthetic parathyroid hormone fragments shortened at the amino terminus stimulate glucose-6-phosphate dehydrogenase activity in the distal renal tubule. Sakaguchi, K., Fukase, M., Kobayashi, I., Kimura, T., Sakakibara, S., Katsuragi, S., Morita, K., Noda, T., Fujita, T. J. Bone Miner. Res. (1987) [Pubmed]
  37. The influence of insulin on various enzyme activities in human and rat hepatoma cells. Grimm, J. Eur. J. Biochem. (1976) [Pubmed]
  38. Signal transduction proteins that associate with the platelet-derived growth factor (PDGF) receptor mediate the PDGF-induced release of glucose-6-phosphate dehydrogenase from permeabilized cells. Tian, W.N., Pignatare, J.N., Stanton, R.C. J. Biol. Chem. (1994) [Pubmed]
  39. Dog liver glucose-6-phosphate dehydrogenase: purification and kinetic properties. Ozer, N., Bilgi, C., Hamdi Ogüs, I. Int. J. Biochem. Cell Biol. (2002) [Pubmed]
  40. The human mRNA that provides the N-terminus of chimeric G6PD encodes GMP reductase. Henikoff, S., Smith, J.M. Cell (1989) [Pubmed]
  41. X-chromosome markers and manic-depressive illness. Rejection of linkage to Xq28 in nine bipolar pedigrees. Berrettini, W.H., Goldin, L.R., Gelernter, J., Gejman, P.V., Gershon, E.S., Detera-Wadleigh, S. Arch. Gen. Psychiatry (1990) [Pubmed]
  42. Human X-Linked genes regionally mapped utilizing X-autosome translocations and somatic cell hybrids. Shows, T.B., Brown, J.A. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  43. Cytogenetic and molecular studies on a recombinant human X chromosome: implications for the spreading of X chromosome inactivation. Mohandas, T., Geller, R.L., Yen, P.H., Rosendorff, J., Bernstein, R., Yoshida, A., Shapiro, L.J. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  44. Deletion of leucine 61 in glucose-6-phosphate dehydrogenase leads to chronic nonspherocytic anemia, granulocyte dysfunction, and increased susceptibility to infections. van Bruggen, R., Bautista, J.M., Petropoulou, T., de Boer, M., van Zwieten, R., Gómez-Gallego, F., Belohradsky, B.H., Hartwig, N.G., Stevens, D., Mason, P.J., Roos, D. Blood (2002) [Pubmed]
  45. Frequent derepression of G6PD and HPRT on the marsupial inactive X chromosome associated with cell proliferation in vitro. Migeon, B.R., Jan de Beur, S., Axelman, J. Exp. Cell Res. (1989) [Pubmed]
  46. Increased HK1 activity levels in the red cells of a patient with a de novo trisomy 10p: t(Y;10)(p11;p12). Dallapiccola, B., Chessa, L., Vignetti, P., Ferrante, E., Gandini, E. Hum. Genet. (1979) [Pubmed]
  47. Increased incidence of sepsis and altered monocyte functions in severely injured type A- glucose-6-phosphate dehydrogenase-deficient African American trauma patients. Spolarics, Z., Siddiqi, M., Siegel, J.H., Garcia, Z.C., Stein, D.S., Ong, H., Livingston, D.H., Denny, T., Deitch, E.A. Crit. Care Med. (2001) [Pubmed]
WikiGenes - Universities