The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Investigation of resistance to DNA cross-linking agents in 9L cell lines with different sensitivities to chloroethylnitrosoureas.

The 9L-2, 9L-7, and 9L-8 cell lines, derived from the 9L in vivo rat brain tumor, were treated with nitrosoureas that can alkylate and cross-link DNA and carbamoylate intracellular molecules to various extents. Compared to 9L cells, 9L-2 cells were very resistant to the cytotoxic effects of 1,3-bis(2-chloroethyl)-1-nitrosourea, and to 2-[3-(2-chloroethyl)-3-nitrosoureido]-D-deoxyglucopyranose. The sensitivity of 9L-7 and 9L-8 cell lines to these drugs was intermediate between 9L and 9L-2. Treatment of 9L, 9L-2, 9L-7, and 9L-8 cell lines with 1,3-bis(trans-4-hydroxycyclohexyl)-1-nitrosourea produced approximately the same level of cell kill. Compared to 9L cells, 9L-2 cells are 10-fold more resistant to the cytotoxic effects, 34-fold more resistant to the induction of sister chromatid exchanges, and have 40% fewer DNA interstrand cross-links caused by treatment with 3-(4-amino-2-methyl-5-pyrimidinyl)methyl-1-(2-chloroethyl)-1-nitrosourea . In contrast, treatment of 9L and 9L-2 cells with 1-ethylnitrosourea produced approximately the same level of cell kill and induction of sister chromatid exchanges. Our results suggest that the resistance of 9L-2, 9L-7, and 9L-8 cells is related to DNA cross-linking and not to alkylation or carbamoylation. We studied the effects of other agents that form DNA cross-links with structures different from those formed by treatment with chloroethylnitrosoureas (CENUs) in 9L and 9L-2 cells. In contrast to results obtained with CENUs, 9L-2 cells were 2-fold more sensitive to the cytotoxic effects, 2-fold more sensitive to the induction of sister chromatid exchanges, and had 3-fold more cross-links formed than 9L cells treated with nitrogen mustard. However, the amount of cell kill, number of sister chromatid exchanges induced, and the DNA cross-linking were the same for 9L and 9L-2 cells treated with cis-diamminedichlorplatinum(II). Our results indicate that cellular resistance to CENUs is highly specific and that the mechanism of resistance does not allow cross-resistance with other DNA cross-linking agents. These and other results suggest that when DNA repair processes mediate cellular resistance to CENUs, other cross-linking agents will not be cross-resistant unless they form alkylation products that are affected by repair processes that mediate resistance to CENUs.[1]

References

  1. Investigation of resistance to DNA cross-linking agents in 9L cell lines with different sensitivities to chloroethylnitrosoureas. Bodell, W.J., Gerosa, M., Aida, T., Berger, M.S., Rosenblum, M.L. Cancer Res. (1985) [Pubmed]
 
WikiGenes - Universities