Hg2+-induced contracture in mechanically skinned fibers of frog skeletal muscle.
In mechanically skinned fibers of the semitendinosus muscle of bullfrogs, we examined the role of membrane sulfhydryl groups on Ca2+ release from the sarcoplasmic reticulum (SR). Hg2+, a sulfhydryl reagent (20-100 microM), induced a repetitive contracture of skinned fibers, and this contracture did not occur in skinned fibers in which the SR had been disrupted by treatment with a detergent (Brij 58). Procaine (10 mM), Mg2+ (5 mM), or dithiothreitol (1 mM) blocked the Hg2+-induced contracture. Ag+ or p-chloromercuribenzenesulfonic acid produced similar contractures to that induced by Hg2+. We conclude that Hg2+ releases Ca2+ from SR of a skinned fiber by modifying sulfhydryl groups on the SR membrane, and suggest that the Ca2+ released by Hg2+ may trigger a greater release of Ca2+ from SR to develop tension.[1]References
- Hg2+-induced contracture in mechanically skinned fibers of frog skeletal muscle. Aoki, T., Oba, T., Hotta, K. Can. J. Physiol. Pharmacol. (1985) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg