The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mechanism of inactivation of 3-oxosteroid delta 5-isomerase by 17 beta-oxiranes.

The affinity label (17S)-spiro[estra-1,3,5(10),6,8-pentaene-17,2'-oxiran]-3-ol (5 beta) inactivates 3-oxosteroid delta 5-isomerase from Pseudomonas testosteroni by formation of a covalent bond between Asp-38 of the enzyme and the steroid. High-performance liquid chromatography (HPLC) analysis of tryptic digests of inactivated enzyme shows that two isomeric steroid-containing peptides are formed in a ratio of 9:1 at pH 7 (TPS1 and TPS2). Hydrolysis of each of these peptides produces a different steroid: TPS1 releases 17 alpha-(hydroxymethyl)estra-1,3,5(10),6,8-pentaene-3,17 beta-diol (S1) whereas TPS2 yields 17 beta-(hydroxymethyl)estra-1,3,5(10),6,8-pentaene-3,17 alpha-diol (S2). Inactivation of the enzyme by (17S)-spiro[estra-1,3,5(10),6,8-pentaene-17,2'-oxiran-18O]-3-ol, followed by mass spectral analysis of the diacetate of the steroid released upon hydrolysis of the enzyme-inhibitor bond, reveals that TPS1 is formed by attack of Asp-38 at the methylene carbon of the oxirane. In contrast, TPS2 is produced by Asp-38 attack at the tertiary carbon. These results imply that inactivation occurs through concurrent SN1 and SN2 reactions of Asp-38 with the protonated inhibitor and that Asp-38 is located on the alpha face of the steroid when it is bound to the active site in the correct manner to react for both the SN1 and SN2 processes.[1]

References

  1. Mechanism of inactivation of 3-oxosteroid delta 5-isomerase by 17 beta-oxiranes. Bantia, S., Bevins, C.L., Pollack, R.M. Biochemistry (1985) [Pubmed]
 
WikiGenes - Universities