The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The biosynthesis of cyanogenic glucosides in higher plants. N-Hydroxytyrosine as an intermediate in the biosynthesis of dhurrin by Sorghum bicolor (Linn) Moench.

The following compounds were tested as early intermediates in the conversion of tyrosine to p-hydroxymandelonitrile by a microsomal preparation from dark grown sorghum seedlings: p-hydroxyphenylacetamide, 1-nitro-2-p-hydroxyphenylethane, p-hydroxyphenyl-pyruvic acid oxime, tyramine, N-hydroxytyramine, and N-hydroxytyrosine. Of these, only N-hydroxytyrosine was metabolized to p-hydroxymandelonitrile. N-Hydroxytyrosine was produced from L-[U-14C]tyrosine in tracer experiments when unlabeled N-hydroxytyrosine was added as a trap. These data indicate N-hydroxytyrosine as the first intermediate in the biosynthesis of dhurrin, the cyanogenic glucoside of sorghum, and represent the first demonstration of the formation of an alpha-N-hydroxy-amino acid in a biological system. The enzyme system involved in this reaction was partially characterized with respect to substrate specificity and the effect of various inhibitors. The enzyme was shown to have properties different than those reported for the mammalian enzyme system(s) involved in the N-hydroxylation of amine drugs. The possible involvement of N-hydroxyamino acids in the biosynthesis of other secondary plant products is discussed.[1]


WikiGenes - Universities