The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Sorghum

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Sorghum

 

High impact information on Sorghum

  • Finally, comparative analysis of the gene composition in barley, wheat (Triticum aestivum), rice (Oryza sativa), and sorghum (Sorghum bicolor) suggested massive gene movements at the Rph7 locus in the Triticeae lineage [5].
  • Isolation of the heme-thiolate enzyme cytochrome P-450TYR, which catalyzes the committed step in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench [6].
  • The cytochrome P-450 enzyme (hemethiolate enzyme) that catalyzes the N-hydroxylation of L-tyrosine to N-hydroxytyrosine, the committed step in the biosynthesis of the cyanogenic glucoside dhurrin, has been isolated from microsomes prepared from etiolated seedlings of Sorghum bicolor (L.) Moench [6].
  • Based upon the results of a Cot analysis, hydroxyapatite chromatography was used to fractionate sorghum (Sorghum bicolor) genomic DNA into highly repetitive (HR), moderately repetitive (MR), and single/low-copy (SL) sequence components that were consequently cloned to produce HRCot, MRCot, and SLCot genomic libraries [7].
  • NMR analyses of the labeling pattern obtained using various 13C-labeled precursors indicated that both the lipid tail and the quinone head of sorgoleone, the main allelopathic component of the oily root exudate of Sorghum bicolor, were derived from acetate units, but that the two moieties were synthesized in different subcellular compartments [8].
 

Biological context of Sorghum

 

Anatomical context of Sorghum

 

Associations of Sorghum with chemical compounds

 

Gene context of Sorghum

  • Characterization of a Sorghum bicolor gene family encoding putative protein kinases with a high similarity to the yeast SNF1 protein kinase [21].
  • In contrast, when a Sorghum bicolor atp6 gene was introduced into isolated maize mitochondria, the gene was transcribed, but the RNA was not edited, although all the editing sites in maize and sorghum atp6 RNA are identical [22].
  • Cloning and expression analysis of CRY2 gene in Sorghum bicolor [23].
  • Cytochrome P-450TYR, which catalyzes the N-hydroxylation of L-tyrosine in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench has recently been isolated (Sibbesen, O., Koch, B., Halkier, B. A., and Møller, B. L. (1994) Proc. Natl. Acad. Sci. U.S.A. 92, 9740-9744) [24].
  • Novel cyanogenic plants have been generated by the simultaneous expression of the two multifunctional sorghum (Sorghum bicolor [L.] Moench) cytochrome P450 enzymes CYP79A1 and CYP71E1 in tobacco (Nicotiana tabacum cv Xanthi) and Arabidopsis under the regulation of the constitutive 35S promoter [25].
 

Analytical, diagnostic and therapeutic context of Sorghum

References

  1. Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Bak, S., Kahn, R.A., Nielsen, H.L., Moller, B.L., Halkier, B.A. Plant Mol. Biol. (1998) [Pubmed]
  2. Coat protein of potyviruses. 7. Amino acid sequence of peanut stripe virus. McKern, N.M., Edskes, H.K., Ward, C.W., Strike, P.M., Barnett, O.W., Shukla, D.D. Arch. Virol. (1991) [Pubmed]
  3. Assessment of comparative toxicities of lead and copper using plant assay. An, Y.J. Chemosphere (2006) [Pubmed]
  4. Short-term effect of antibiotic feeding on site and extent of digestion of growing and finishing diets in feedlot cattle. Zinn, R.A. J. Anim. Sci. (1986) [Pubmed]
  5. Large intraspecific haplotype variability at the Rph7 locus results from rapid and recent divergence in the barley genome. Scherrer, B., Isidore, E., Klein, P., Kim, J.S., Bellec, A., Chalhoub, B., Keller, B., Feuillet, C. Plant Cell (2005) [Pubmed]
  6. Isolation of the heme-thiolate enzyme cytochrome P-450TYR, which catalyzes the committed step in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Sibbesen, O., Koch, B., Halkier, B.A., Møller, B.L. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  7. Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Peterson, D.G., Schulze, S.R., Sciara, E.B., Lee, S.A., Bowers, J.E., Nagel, A., Jiang, N., Tibbitts, D.C., Wessler, S.R., Paterson, A.H. Genome Res. (2002) [Pubmed]
  8. Elucidation of the biosynthetic pathway of the allelochemical sorgoleone using retrobiosynthetic NMR analysis. Dayan, F.E., Kagan, I.A., Rimando, A.M. J. Biol. Chem. (2003) [Pubmed]
  9. The UDP-glucose:p-hydroxymandelonitrile-O-glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor. Isolation, cloning, heterologous expression, and substrate specificity. Jones, P.R., Moller, B.L., Hoj, P.B. J. Biol. Chem. (1999) [Pubmed]
  10. The specificity of proanthocyanidin-protein interactions. Hagerman, A.E., Butler, L.G. J. Biol. Chem. (1981) [Pubmed]
  11. Structure and properties of an engineered transketolase from maize. Gerhardt, S., Echt, S., Busch, M., Freigang, J., Auerbach, G., Bader, G., Martin, W.F., Bacher, A., Huber, R., Fischer, M. Plant Physiol. (2003) [Pubmed]
  12. The molecular basis of C4 photosynthesis in sorghum: isolation, characterization and RFLP mapping of mesophyll- and bundle-sheath-specific cDNAs obtained by differential screening. Wyrich, R., Dressen, U., Brockmann, S., Streubel, M., Chang, C., Qiang, D., Paterson, A.H., Westhoff, P. Plant Mol. Biol. (1998) [Pubmed]
  13. Chorismate mutase isoenzymes from Sorghum bicolor: immunological characterization. Singh, B.K., Conn, E.E. Arch. Biochem. Biophys. (1986) [Pubmed]
  14. Hemolytic activity in crude polysaccharide extracted from grain sorghum [Sorghum bicolor (L.) Moench]. Neucere, J.N., Godshall, M.A., Roberts, E.J. Toxicon (1986) [Pubmed]
  15. Mitochondrial electroporation and in organello RNA editing of chimeric atp6 transcripts. Staudinger, M., Bolle, N., Kempken, F. Mol. Genet. Genomics (2005) [Pubmed]
  16. The in vitro biosynthesis of dhurrin, the cyanogenic glycoside of Sorghum bicolor. MacFarlane, I.J., Lees, E.M., Conn, E.E. J. Biol. Chem. (1975) [Pubmed]
  17. The biosynthesis of cyanogenic glucosides in higher plants. The (E)- and (Z)-isomers of p-hydroxyphenylacetaldehyde oxime as intermediates in the biosynthesis of dhurrin in Sorghum bicolor (L.) Moench. Halkier, B.A., Olsen, C.E., Møller, B.L. J. Biol. Chem. (1989) [Pubmed]
  18. The biosynthesis of cyanogenic glucosides in higher plants. N-Hydroxytyrosine as an intermediate in the biosynthesis of dhurrin by Sorghum bicolor (Linn) Moench. Møller, B.L., Conn, E.E. J. Biol. Chem. (1979) [Pubmed]
  19. Isolation and reconstitution of the heme-thiolate protein obtusifoliol 14alpha-demethylase from Sorghum bicolor (L.) Moench. Kahn, R.A., Bak, S., Olsen, C.E., Svendsen, I., Moller, B.L. J. Biol. Chem. (1996) [Pubmed]
  20. The in vitro biosynthesis of taxiphyllin and the channeling of intermediates in Triglochin maritima. Cutler, A.J., Hösel, W., Sternberg, M., Conn, E.E. J. Biol. Chem. (1981) [Pubmed]
  21. Characterization of a Sorghum bicolor gene family encoding putative protein kinases with a high similarity to the yeast SNF1 protein kinase. Annen, F., Stockhaus, J. Plant Mol. Biol. (1998) [Pubmed]
  22. Electroporation of isolated higher-plant mitochondria: transcripts of an introduced cox2 gene, but not an atp6 gene, are edited in organello. Staudinger, M., Kempken, F. Mol. Genet. Genomics (2003) [Pubmed]
  23. Cloning and expression analysis of CRY2 gene in Sorghum bicolor. Xie, X.Z., Chen, Z.P., Wang, X.J. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao (2005) [Pubmed]
  24. Cytochrome P-450TYR is a multifunctional heme-thiolate enzyme catalyzing the conversion of L-tyrosine to p-hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Sibbesen, O., Koch, B., Halkier, B.A., Møller, B.L. J. Biol. Chem. (1995) [Pubmed]
  25. Transgenic tobacco and Arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in Dhurrin biosynthesis. Bak, S., Olsen, C.E., Halkier, B.A., Møller, B.L. Plant Physiol. (2000) [Pubmed]
  26. Molecular cloning of hydroxynitrile lyase from Sorghum bicolor (L.). Homologies to serine carboxypeptidases. Wajant, H., Mundry, K.W., Pfizenmaier, K. Plant Mol. Biol. (1994) [Pubmed]
 
WikiGenes - Universities