The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Evolution of L-phenylalanine biosynthesis in rRNA homology group I of Pseudomonas.

Group I pseudomonads exhibit diversity for L-phenylalanine biosynthesis that is a basis for separation of two subgroups. Subgroup Ib (fluorescent species such as Pseudomonas aeruginosa, P. fluorescens, or P. putida) possesses an unregulated overflow pathway to L-phenylalanine, together with a second, regulated pathway. Subgroup Ia (non-fluorescent species such as P. stutzeri, P. mendocina, or P. alcaligenes) possess only the regulated pathway to L-phenylalanine. Thus, subgroup Ia species lack an unregulated isozyme of chorismate mutase and arogenate dehydratase, enzymes which are thought to divert chorismate to L-phenylalanine under conditions of high carbon input into aromatic biosynthesis. A priori the overflow pathway could have been either lost in subgroup Ia or gained in subgroup Ib. Since Group V pseudomonads (mainly Xanthomonas) are known to branch off from the Group I lineage at a deeper phylogenetic level than the point of divergence for subgroups Ia and Ib, the presence of the overflow pathway in Group V pseudomonads reveals that the overflow pathway must have been lost in the evolution of subgroup Ia. All Group I species possess a bifunctional protein (P-protein) which catalyzes both chorismate mutase and prephenate dehydratase reactions. In subgroup Ia species this highly conserved protein must be the sole source of prephenate to be used for tyrosine biosynthesis. Thus, the channeling action of the P-protein whereby chorismate is committed towards L-phenylalanine formation can be negated by selective feedback inhibition exerted by L-phenylalanine upon the prephenate dehydratase component of the P-protein. Diversion of prephenate molecules under the latter conditions towards L-tyrosine comprises a channel-shuttle mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)[1]

References

  1. Evolution of L-phenylalanine biosynthesis in rRNA homology group I of Pseudomonas. Byng, G.S., Whitaker, R.J., Jensen, R.A. Arch. Microbiol. (1983) [Pubmed]
 
WikiGenes - Universities