The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Xanthomonas


High impact information on Xanthomonas

  • Xanthomonas campestris pv. campestris is grown commercially to produce the exopolysaccharide xanthan gum, which is used as a viscosifying and stabilizing agent in many industries [6].
  • Structure of proline iminopeptidase from Xanthomonas campestris pv. citri: a prototype for the prolyl oligopeptidase family [7].
  • A promoter-probe plasmid suitable for use in Xanthomonas campestris pathovar campestris (causal agent of crucifer black rot) was constructed by ligating a broad host range IncQ replicon into the promoter-probe plasmid pKK232-8, which contains a promoterless chloramphenicol acetyltransferase gene [8].
  • Adenylate cyclase activity was shown to be type III secretion-dependent as the Xanthomonas hrp mutations, hrcV or hrpF, failed to produce detectable levels of cAMP in infected pepper plants [9].
  • Strains of Xanthomonas campestris pv. vesicatoria (Xcv) carrying avrBs2 are specifically recognized by Bs2 pepper plants, resulting in localized cell death and plant resistance [10].

Chemical compound and disease context of Xanthomonas


Biological context of Xanthomonas

  • hpaA mutants of Xanthomonas campestris pv. vesicatoria are affected in pathogenicity but retain the ability to induce host-specific hypersensitive reaction [15].
  • The hrp (hypersensitive response and pathogenicity) gene cluster of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria encodes a type III secretion (TTS) system, which injects bacterial effector proteins into the plant cell [16].
  • Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. campestris: identification of novel cell-cell communication-dependent genes and functions [17].
  • Transposon insertions in a novel 3.798 kb open reading frame (ORF) of the rice pathogen, Xanthomonas oryzae pv. oryzae (Xoo) cause virulence deficiency and altered colony/lawn morphology [18].
  • We have recently reported that a unique high affinity binding site in Xanthomonas maltophilia preferentially binds hCG and a native CG-like ligand over LH or other glycoprotein hormones [19].

Anatomical context of Xanthomonas

  • The Gram-negative plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria translocates effector proteins via a specialized type III secretion (TTS) system into the host cell cytosol [20].
  • We describe three instances in which the diagnostic laboratory misidentified Xanthomonas maltophilia as P. cepacia in cultures of sputum from patients with CF [21].
  • Degradation of acrylamide by immobilized cells of a Pseudomonas sp. and Xanthomonas maltophilia [22].
  • By the fusion of mouse myeloma cells (SP2/0-Ag14) and spleen cells derived from BALB/c mice immunized with the preparation of Xanthomonas campestris pv. oryzae Ks-6-6, Os-213, Yz-32 and Yz-24, we obtained 12 hybridoma cell lines secreting monoclonal antibodies [23].

Gene context of Xanthomonas


Analytical, diagnostic and therapeutic context of Xanthomonas


  1. Identification of catalytic residues of pepstatin-insensitive carboxyl proteinases from prokaryotes by site-directed mutagenesis. Oyama, H., Abe, S., Ushiyama, S., Takahashi, S., Oda, K. J. Biol. Chem. (1999) [Pubmed]
  2. A new specific endonuclease present in Xanthomonas holcicola, Xanthomonas papavericola and Brevibacterium luteum. Gingeras, T.R., Myers, P.A., Olson, J.A., Hanberg, F.A., Roberts, R.J. J. Mol. Biol. (1978) [Pubmed]
  3. In vitro and in vivo antibacterial activities of AM-1155, a new 6-fluoro-8-methoxy quinolone. Hosaka, M., Yasue, T., Fukuda, H., Tomizawa, H., Aoyama, H., Hirai, K. Antimicrob. Agents Chemother. (1992) [Pubmed]
  4. Chemical structure and inhalation toxicity of lipopolysaccharides from bacteria on cotton. Helander, I., Salkinoja-Salonen, M., Rylander, R. Infect. Immun. (1980) [Pubmed]
  5. Mechanism of action and selective toxicity of ascamycin, a nucleoside antibiotic. Osada, H., Isono, K. Antimicrob. Agents Chemother. (1985) [Pubmed]
  6. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. da Silva, A.C., Ferro, J.A., Reinach, F.C., Farah, C.S., Furlan, L.R., Quaggio, R.B., Monteiro-Vitorello, C.B., Van Sluys, M.A., Almeida, N.F., Alves, L.M., do Amaral, A.M., Bertolini, M.C., Camargo, L.E., Camarotte, G., Cannavan, F., Cardozo, J., Chambergo, F., Ciapina, L.P., Cicarelli, R.M., Coutinho, L.L., Cursino-Santos, J.R., El-Dorry, H., Faria, J.B., Ferreira, A.J., Ferreira, R.C., Ferro, M.I., Formighieri, E.F., Franco, M.C., Greggio, C.C., Gruber, A., Katsuyama, A.M., Kishi, L.T., Leite, R.P., Lemos, E.G., Lemos, M.V., Locali, E.C., Machado, M.A., Madeira, A.M., Martinez-Rossi, N.M., Martins, E.C., Meidanis, J., Menck, C.F., Miyaki, C.Y., Moon, D.H., Moreira, L.M., Novo, M.T., Okura, V.K., Oliveira, M.C., Oliveira, V.R., Pereira, H.A., Rossi, A., Sena, J.A., Silva, C., de Souza, R.F., Spinola, L.A., Takita, M.A., Tamura, R.E., Teixeira, E.C., Tezza, R.I., Trindade dos Santos, M., Truffi, D., Tsai, S.M., White, F.F., Setubal, J.C., Kitajima, J.P. Nature (2002) [Pubmed]
  7. Structure of proline iminopeptidase from Xanthomonas campestris pv. citri: a prototype for the prolyl oligopeptidase family. Medrano, F.J., Alonso, J., García, J.L., Romero, A., Bode, W., Gomis-Rüth, F.X. EMBO J. (1998) [Pubmed]
  8. Identification of plant-induced genes of the bacterial pathogen Xanthomonas campestris pathovar campestris using a promoter-probe plasmid. Osbourn, A.E., Barber, C.E., Daniels, M.J. EMBO J. (1987) [Pubmed]
  9. Direct biochemical evidence for type III secretion-dependent translocation of the AvrBs2 effector protein into plant cells. Casper-Lindley, C., Dahlbeck, D., Clark, E.T., Staskawicz, B.J. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  10. Molecular signals required for type III secretion and translocation of the Xanthomonas campestris AvrBs2 protein to pepper plants. Mudgett, M.B., Chesnokova, O., Dahlbeck, D., Clark, E.T., Rossier, O., Bonas, U., Staskawicz, B.J. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  11. Fructose catabolism in Xanthomonas campestris pv. campestris. Sequence of the PTS operon, characterization of the fructose-specific enzymes. de Crécy-Lagard, V., Bouvet, O.M., Lejeune, P., Danchin, A. J. Biol. Chem. (1991) [Pubmed]
  12. Crystal structure of N-acetylornithine transcarbamylase from Xanthomonas campestris: a novel enzyme in a new arginine biosynthetic pathway found in several eubacteria. Shi, D., Morizono, H., Yu, X., Roth, L., Caldovic, L., Allewell, N.M., Malamy, M.H., Tuchman, M. J. Biol. Chem. (2005) [Pubmed]
  13. Environmentally regulated algD promoter is responsive to the cAMP receptor protein in Escherichia coli. DeVault, J.D., Hendrickson, W., Kato, J., Chakrabarty, A.M. Mol. Microbiol. (1991) [Pubmed]
  14. Molecular and physiological analysis of an OxyR-regulated ahpC promoter in Xanthomonas campestris pv. phaseoli. Loprasert, S., Fuangthong, M., Whangsuk, W., Atichartpongkul, S., Mongkolsuk, S. Mol. Microbiol. (2000) [Pubmed]
  15. hpaA mutants of Xanthomonas campestris pv. vesicatoria are affected in pathogenicity but retain the ability to induce host-specific hypersensitive reaction. Huguet, E., Hahn, K., Wengelnik, K., Bonas, U. Mol. Microbiol. (1998) [Pubmed]
  16. HpaB from Xanthomonas campestris pv. vesicatoria acts as an exit control protein in type III-dependent protein secretion. Büttner, D., Gürlebeck, D., Noël, L.D., Bonas, U. Mol. Microbiol. (2004) [Pubmed]
  17. Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. campestris: identification of novel cell-cell communication-dependent genes and functions. He, Y.W., Xu, M., Lin, K., Ng, Y.J., Wen, C.M., Wang, L.H., Liu, Z.D., Zhang, H.B., Dong, Y.H., Dow, J.M., Zhang, L.H. Mol. Microbiol. (2006) [Pubmed]
  18. A high-molecular-weight outer membrane protein of Xanthomonas oryzae pv. oryzae exhibits similarity to non-fimbrial adhesins of animal pathogenic bacteria and is required for optimum virulence. Ray, S.K., Rajeshwari, R., Sharma, Y., Sonti, R.V. Mol. Microbiol. (2002) [Pubmed]
  19. Evidence for an autocrine/paracrine function of chorionic gonadotropin in Xanthomonas maltophilia. Carrell, D.T., Hammond, M.E., Odell, W.D. Endocrinology (1993) [Pubmed]
  20. Targeting of two effector protein classes to the type III secretion system by a HpaC- and HpaB-dependent protein complex from Xanthomonas campestris pv. vesicatoria. Büttner, D., Lorenz, C., Weber, E., Bonas, U. Mol. Microbiol. (2006) [Pubmed]
  21. Xanthomonas maltophilia misidentified as Pseudomonas cepacia in cultures of sputum from patients with cystic fibrosis: a diagnostic pitfall with major clinical implications. Burdge, D.R., Noble, M.A., Campbell, M.E., Krell, V.L., Speert, D.P. Clin. Infect. Dis. (1995) [Pubmed]
  22. Degradation of acrylamide by immobilized cells of a Pseudomonas sp. and Xanthomonas maltophilia. Nawaz, M.S., Franklin, W., Cerniglia, C.E. Can. J. Microbiol. (1993) [Pubmed]
  23. The production of hybridoma cell line secreting monoclonal antibodies against Xanthomonas campestris pv. oryzae and its application in the classification of strains. Huang, B., Zhu, H., Hu, G., Li, Q., Gao, J., Liu, S. Chin. J. Biotechnol. (1992) [Pubmed]
  24. In vitro activity and beta-lactamase stability of LJC 10,627. Neu, H.C., Gu, J.W., Fang, W., Chin, N.X. Antimicrob. Agents Chemother. (1992) [Pubmed]
  25. In vitro activity of ME1228, a new parenteral cephalosporin. Neu, H.C., Saha, G., Chin, N.X. Antimicrob. Agents Chemother. (1989) [Pubmed]
  26. Molecular evolution of hisB genes. Brilli, M., Fani, R. J. Mol. Evol. (2004) [Pubmed]
  27. Identification of new protein-protein interactions involving the products of the chromosome- and plasmid-encoded type IV secretion loci of the phytopathogen Xanthomonas axonopodis pv. citri. Alegria, M.C., Souza, D.P., Andrade, M.O., Docena, C., Khater, L., Ramos, C.H., da Silva, A.C., Farah, C.S. J. Bacteriol. (2005) [Pubmed]
  28. A gene for superoxide dismutase from Xanthomonas campestris pv. campestris and its expression during bacterial-plant interactions. Smith, S.G., Wilson, T.J., Dow, J.M., Daniels, M.J. Mol. Plant Microbe Interact. (1996) [Pubmed]
  29. cDNA-AFLP analysis unravels a genome-wide hrpG-regulon in the plant pathogen Xanthomonas campestris pv. vesicatoria. Noël, L., Thieme, F., Nennstiel, D., Bonas, U. Mol. Microbiol. (2001) [Pubmed]
  30. Crystallization and preliminary X-ray diffraction analysis of proline iminopeptidase from Xanthomonas campestris pv. citri. Medrano, F.J., Alonso, J., García, J.L., Bode, W., Gomis-Rüth, F.X. FEBS Lett. (1997) [Pubmed]
  31. Clustering of mutations blocking synthesis of xanthan gum by Xanthomonas campestris. Thorne, L., Tansey, L., Pollock, T.J. J. Bacteriol. (1987) [Pubmed]
  32. Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase. Lee, Y.A., Hendson, M., Panopoulos, N.J., Schroth, M.N. J. Bacteriol. (1994) [Pubmed]
WikiGenes - Universities