The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

prephenate     1-(2-carboxy-2-oxo-ethyl)-4- hydroxy...

Synonyms: Prephenic acid, SureCN1703157, SureCN1703158, SureCN9885026, CHEBI:16666, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of prephenate

 

High impact information on prephenate

 

Chemical compound and disease context of prephenate

 

Biological context of prephenate

 

Anatomical context of prephenate

 

Associations of prephenate with other chemical compounds

  • Co-accumulation of prephenate, L-arogenate, and spiro-arogenate in a mutant of Neurospora [22].
  • The pH dependencies of log (V/KprephenateEt) and of pKi for hydroxyphenyllactate show that the wild-type dehydrogenase possesses a group with a pK of 8.8 that must be protonated for binding prephenate to the enzyme [23].
  • The effects of phenylalanine, NaCl and pH on the conformation of chorismate mutase/prephenate dehydratase have been investigated, using measurements of far and near-ultraviolet circular dichroic spectra and ultraviolet difference spectra [24].
  • Chorismate mutase/prephenate dehydrogenase: protection of the active site(s) against inactivation by iodoacetamide [proceedings] [25].
  • These results are interpreted as indicating that both of these cysteine residues are at, or near to, the prephenate dehydratase active site and are possibly essential for the prephenate dehydratase activity of the enzyme [26].
 

Gene context of prephenate

 

Analytical, diagnostic and therapeutic context of prephenate

References

  1. Cyclohexadienyl dehydratase from Pseudomonas aeruginosa. Molecular cloning of the gene and characterization of the gene product. Zhao, G.S., Xia, T.H., Fischer, R.S., Jensen, R.A. J. Biol. Chem. (1992) [Pubmed]
  2. Regulation and state of aggregation of Bacillus subtilis prephenate dehydratase in the presence of allosteric effectors. Riepl, R.G., Glover, G.I. J. Biol. Chem. (1979) [Pubmed]
  3. A single cyclohexadienyl dehydrogenase specifies the prephenate dehydrogenase and arogenate dehydrogenase components of the dual pathways to L-tyrosine in Pseudomonas aeruginosa. Xia, T.H., Jensen, R.A. J. Biol. Chem. (1990) [Pubmed]
  4. Biosynthesis of the antibiotic 2,5-dihydrophenylalanine by Streptomyces arenae. Shimada, K., Hook, D.J., Warner, G.F., Floss, H.G. Biochemistry (1978) [Pubmed]
  5. Variable enzymological patterning in tyrosine biosynthesis as a means of determining natural relatedness among the Pseudomonadaceae. Byng, G.S., Whitaker, R.J., Gherna, R.L., Jensen, R.A. J. Bacteriol. (1980) [Pubmed]
  6. The mechanism of catalysis of the chorismate to prephenate reaction by the Escherichia coli mutase enzyme. Hur, S., Bruice, T.C. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  7. Substrate conformational transitions in the active site of chorismate mutase: their role in the catalytic mechanism. Guo, H., Cui, Q., Lipscomb, W.N., Karplus, M. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  8. Exploring the active site of chorismate mutase by combinatorial mutagenesis and selection: the importance of electrostatic catalysis. Kast, P., Asif-Ullah, M., Jiang, N., Hilvert, D. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  9. Crystal Structure of Prephenate Dehydrogenase from Aquifex aeolicus: INSIGHTS INTO THE CATALYTIC MECHANISM. Sun, W., Singh, S., Zhang, R., Turnbull, J.L., Christendat, D. J. Biol. Chem. (2006) [Pubmed]
  10. Structure of D-prephenyllactate. A carboxycyclohexadienyl metabolite from Neurospora crassa. Zamir, L.O., Tiberio, R., Devor, K.A., Sauriol, F., Ahmad, S., Jensen, R.A. J. Biol. Chem. (1988) [Pubmed]
  11. Mechanisms of enzymatic and acid-catalyzed decarboxylations of prephenate. Hermes, J.D., Tipton, P.A., Fisher, M.A., O'Leary, M.H., Morrison, J.F., Cleland, W.W. Biochemistry (1984) [Pubmed]
  12. Clues from Xanthomonas campestris about the evolution of aromatic biosynthesis and its regulation. Whitaker, R.J., Berry, A., Byng, G.S., Fiske, M.J., Jensen, R.A. J. Mol. Evol. (1984) [Pubmed]
  13. Chorismate mutase/prephenate dehydrogenase from Escherichia coli K12: purification, characterization, and identification of a reactive cysteine. Hudson, G.S., Wong, V., Davidson, B.E. Biochemistry (1984) [Pubmed]
  14. Prephenate dehydratase from the aphid endosymbiont (Buchnera) displays changes in the regulatory domain that suggest its desensitization to inhibition by phenylalanine. Jiménez, N., González-Candelas, F., Silva, F.J. J. Bacteriol. (2000) [Pubmed]
  15. The prephenate dehydrogenase component of the bifunctional T-protein in enteric bacteria can utilize L-arogenate. Ahmad, S., Jensen, R.A. FEBS Lett. (1987) [Pubmed]
  16. The monofunctional chorismate mutase from Bacillus subtilis. Structure determination of chorismate mutase and its complexes with a transition state analog and prephenate, and implications for the mechanism of the enzymatic reaction. Chook, Y.M., Gray, J.V., Ke, H., Lipscomb, W.N. J. Mol. Biol. (1994) [Pubmed]
  17. Biosynthesis of L-p-hydroxyphenylglycine, a non-proteinogenic amino acid constituent of peptide antibiotics. Hubbard, B.K., Thomas, M.G., Walsh, C.T. Chem. Biol. (2000) [Pubmed]
  18. Nucleotide sequence and transcription of the phenylalanine and tyrosine operons of Escherichia coli K12. Hudson, G.S., Davidson, B.E. J. Mol. Biol. (1984) [Pubmed]
  19. Molecular cloning with a pMEA300-derived shuttle vector and characterization of the Amycolatopsis methanolica prephenate dehydratase gene. Vrijbloed, J.W., van Hylckama Vlieg, J., van der Put, N.M., Hessels, G.I., Dijkhuizen, L. J. Bacteriol. (1995) [Pubmed]
  20. Novel features of prephenate aminotransferase from cell cultures of Nicotiana silvestris. Bonner, C.A., Jensen, R.A. Arch. Biochem. Biophys. (1985) [Pubmed]
  21. Regulation of phenylalanine and tyrosine biosynthesis in Pseudomonas aureofaciens ATCC 15926. Blumenstock, E., Salcher, O., Lingens, F. J. Gen. Microbiol. (1980) [Pubmed]
  22. Co-accumulation of prephenate, L-arogenate, and spiro-arogenate in a mutant of Neurospora. Zamir, L.O., Jung, E., Jensen, R.A. J. Biol. Chem. (1983) [Pubmed]
  23. Identifying groups involved in the binding of prephenate to prephenate dehydrogenase from Escherichia coli. Christendat, D., Turnbull, J.L. Biochemistry (1999) [Pubmed]
  24. Chorismate mutase/prephenate dehydratase from Escherichia coli K12. Effect of phenylalanine, NaCl and pH on the protein conformation. Gething, M.J., Davidson, B.E. Eur. J. Biochem. (1978) [Pubmed]
  25. Chorismate mutase/prephenate dehydrogenase: protection of the active site(s) against inactivation by iodoacetamide [proceedings]. Heyde, E. Biochem. Soc. Trans. (1979) [Pubmed]
  26. The reactivity of the sulphydryl groups of chorismate mutase/prephenate dehydratase--a bifunctional enzyme of phenylalanine biosynthesis in Escherichia coli K12. Ma, K.H., Davidson, B.E. Biochim. Biophys. Acta (1985) [Pubmed]
  27. Directed evolution studies with combinatorial libraries of T4 lysozyme mutants. Patten, P.A., Sonoda, T., Davis, M.M. Mol. Divers. (1996) [Pubmed]
  28. Characterization of the prephenate dehydrogenase-encoding gene, TYR1, from Saccharomyces cerevisiae. Mannhaupt, G., Stucka, R., Pilz, U., Schwarzlose, C., Feldmann, H. Gene (1989) [Pubmed]
  29. Reversion of the tyrosine ochre strain Escherichia coli WU3610 under starvation conditions depends on a new gene tas. Timms, A.R., Bridges, B.A. Genetics (1998) [Pubmed]
  30. Remnants of an ancient pathway to L-phenylalanine and L-tyrosine in enteric bacteria: evolutionary implications and biotechnological impact. Bonner, C.A., Fischer, R.S., Ahmad, S., Jensen, R.A. Appl. Environ. Microbiol. (1990) [Pubmed]
  31. Effect of L-serine on the biosynthesis of aromatic amino acids in Escherichia coli. Tazuya-Murayama, K., Aramaki, H., Mishima, M., Saito, K., Ishida, S., Yamada, K. J. Nutr. Sci. Vitaminol. (2006) [Pubmed]
  32. Probing the catalytic mechanism of prephenate dehydratase by site-directed mutagenesis of the Escherichia coli P-protein dehydratase domain. Zhang, S., Wilson, D.B., Ganem, B. Biochemistry (2000) [Pubmed]
  33. Monofunctional chorismate mutase from Bacillus subtilis: FTIR studies and the mechanism of action of the enzyme. Gray, J.V., Knowles, J.R. Biochemistry (1994) [Pubmed]
  34. Novel mutations in the pheA gene of Escherichia coli K-12 which result in highly feedback inhibition-resistant variants of chorismate mutase/prephenate dehydratase. Nelms, J., Edwards, R.M., Warwick, J., Fotheringham, I. Appl. Environ. Microbiol. (1992) [Pubmed]
  35. Chorismate mutase/prephenate dehydratase from Escherichia coli K12. 1. The effect of NaCl and its use in a new purification involving affinity chromatography on sepharosyl-phenylalanine. Gething, M.J., Davidson, B.E., Dopheide, T.A. Eur. J. Biochem. (1976) [Pubmed]
 
WikiGenes - Universities