The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

NAD(P)H oxidase activity in human neutrophils stimulated by phorbol myristate acetate.

Phorbol myristate acetate activated in normal human neutrophils a single enzymatic entity that was dormant in unstimulated cells, optimally active at pH 7.0, and capable of oxidizing either NADH or NADPH, producing NAD(P)+ and superoxide (O27). Comparative fluorometric and spectrophotometric measurements supported the stoichiometry NAD(P)H + 20(2) leads to NAD(P)+ + 20(27) + H+. the seemingly considerable NAD(P)+ production at pH 5.5 and 6.0 was due largely to nonenzymatic oxidation of NAD(P)H by chain reactions initiated by HO27 (perhydroxyl radical), the conjugate acid of O27. This artifact, responsible for earlier erroneous assignments of an acid pH optimum for NAD(P)H oxidase, was prevented by including superoxide dismutase in fluorometric assays. NAD(P)H oxidase was more active towards NADPH (Km = 0.15 +/- 0.03 mM) than NADH (Km = 0.68 +/- 0.2 mM). No suggestion that oxidase activity was allosterically regulated by NAD(P)H was seen. Phorbol myristate acetate-induced O27 production was noted to be modulated by pH in intact neutrophils, suggesting that NAD(P)H oxidase is localized in the plasma membrane where its activity may be subject to (auto) regulation by local H+ concentrations.[1]

References

 
WikiGenes - Universities