The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

NADP     [(2R,3R,4R,5R)-5- [[[[(2R,3S,4R,5R)-5-(5...

Synonyms: beta-TPN, beta-NADP, b-NADP, b-TPN, NADP+, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of triphosphopyridine nucleotide


High impact information on triphosphopyridine nucleotide

  • The primary amino acid sequence of CsgA exhibits homology with members of the short-chain alcohol dehydrogenase (SCAD) family and several lines of evidence suggest that NAD(P)+ binding is essential for biological activity [6].
  • Second, strains with csgA alleles encoding amino acid substitutions T6A and R10A in the NAD(P)+ binding pocket failed to develop [6].
  • Phorbol myristate acetate activated in normal human neutrophils a single enzymatic entity that was dormant in unstimulated cells, optimally active at pH 7.0, and capable of oxidizing either NADH or NADPH, producing NAD(P)+ and superoxide (O27) [7].
  • Ferredoxin-NAD(P)(+) oxidoreductase catalyses the final electron transfer of oxygenic photosynthesis from ferredoxin to NAD(P) [8].
  • Activity changes in enzymes that require NAD(P) as coenzymes were also noted in rice cells ectopically expressing YK1, where the cell death caused by hydrogen peroxide and bacterial disease was down-regulated [9].

Chemical compound and disease context of triphosphopyridine nucleotide


Biological context of triphosphopyridine nucleotide

  • The extent of the hydrolysis of NAD(P)+ is dependent on the amount of both hydroperoxide and Ca2+ [15].
  • This reaction is accompanied by a diminution of the NAD(P)H/NAD(P) ratio and a decrease of the internal negative membrane potential [16].
  • ROS production at complex I is critically dependent upon a highly reduced state of the mitochondrial NAD(P)(+) pool and is achieved upon nearly complete inhibition of the respiratory chain [17].
  • The most likely explanation for a change in the mechanism for oxidative decarboxylation from stepwise with NAD(P) to concerted with alternative dinucleotide substrates such as 3-APAD and PAAD is a difference in the configuration of bound malate when the different dinucleotide substrates are used [18].
  • A detailed reconstruction of the NAD(P) metabolic subsystem using the SEED genomic platform ( helped us accurately annotate respective genes in the entire set of 13 cyanobacterial species with completely sequenced genomes available at the time [19].

Anatomical context of triphosphopyridine nucleotide

  • A NAD(P)-linked 3 alpha-hydroxysteroid dehydrogenase [3 alpha-hydroxysteroid: NAD(P) oxidoreductase, EC], purified to homogeneity from male rat liver cytosol, accounts for most of the oxidative activity for 3 alpha-hydroxysteroids and for benzenedihydrodiol (trans-1,2-dihydroxy-3,5-cyclohexadiene) of this tissue [20].
  • In INS-1 mitochondria citrate oscillations are in phase with NAD(P) oscillations, and in intact INS-1 cells citrate oscillations parallel oscillations in ATP, suggesting that these processes are co-regulated [21].
  • The imprinted membranes, associated with pH-sensitive field-effect transistors (ISFETs) or Au-quartz piezoelectric crystals, enable the potentiometric or microgravimetric analysis of the oxidized NAD(P)+ cofactors and the reduced NAD(P)H cofactors, respectively [22].
  • Redox [NAD(P)H / NAD(P)(+)] fluctuations in isolated mitochondria and intact liver cells were found to display nonrandom, long-range correlations [23].
  • Microfluorimetric techniques were used to measure [Ca2+]i, mitochondrial membrane potential [delta psi m, Rhodamine 123 (Rh 123) fluorescence], NAD(P)H/NAD(P)+ autofluorescence and flavoprotein autofluorescence combined with whole-cell voltage-clamp techniques [24].

Associations of triphosphopyridine nucleotide with other chemical compounds


Gene context of triphosphopyridine nucleotide


Analytical, diagnostic and therapeutic context of triphosphopyridine nucleotide


  1. Elevated NAD(P) glycohydrolase activity: a possible enzymatic marker for malignancy in Burkitt's lymphoma cells. Skala, H., Lenoir, G.M., Pichard, A.L., Vuillaume, M., Dreyfus, J.C. Blood (1982) [Pubmed]
  2. Chimeric structure of the NAD(P)+- and NADP+-dependent malic enzymes of Rhizobium (Sinorhizobium) meliloti. Mitsch, M.J., Voegele, R.T., Cowie, A., Osteras, M., Finan, T.M. J. Biol. Chem. (1998) [Pubmed]
  3. Kinetics and regulation of hepatoma mitochondrial NAD(P) malic enzyme. Teller, J.K., Fahien, L.A., Davis, J.W. J. Biol. Chem. (1992) [Pubmed]
  4. Prevention by pyrazole of the effects of chronic ethanol administration on the redox states of the hepatic nicotinamide--adenine dinucleotide (phosphate) couples and on liver and brain tryptophan metabolism in the rat. Punjani, N.F., Badawy, A.A., Evans, M. Biochem. J. (1979) [Pubmed]
  5. Identification of the Escherichia coli nicotinic acid mononucleotide adenylyltransferase gene. Mehl, R.A., Kinsland, C., Begley, T.P. J. Bacteriol. (2000) [Pubmed]
  6. A tactile sensory system of Myxococcus xanthus involves an extracellular NAD(P)(+)-containing protein. Lee, B.U., Lee, K., Mendez, J., Shimkets, L.J. Genes Dev. (1995) [Pubmed]
  7. NAD(P)H oxidase activity in human neutrophils stimulated by phorbol myristate acetate. Suzuki, Y., Lehrer, R.I. J. Clin. Invest. (1980) [Pubmed]
  8. Protein import into chloroplasts involves redox-regulated proteins. Küchler, M., Decker, S., Hörmann, F., Soll, J., Heins, L. EMBO J. (2002) [Pubmed]
  9. Enhanced dihydroflavonol-4-reductase activity and NAD homeostasis leading to cell death tolerance in transgenic rice. Hayashi, M., Takahashi, H., Tamura, K., Huang, J., Yu, L.H., Kawai-Yamada, M., Tezuka, T., Uchimiya, H. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  10. Re-face stereospecificity at C4 of NAD(P) for alcohol dehydrogenase from Methanogenium organophilum and for (R)-2-hydroxyglutarate dehydrogenase from Acidaminococcus fermentans as determined by 1H-NMR spectroscopy. Berk, H., Buckel, W., Thauer, R.K., Frey, P.A. FEBS Lett. (1996) [Pubmed]
  11. Determination of intracellular pyridine nucleotide levels by bioluminescence using anaerobic bacteria as a model. Schmid, U., Schimz, K.L., Sahm, H. Anal. Biochem. (1989) [Pubmed]
  12. A soybean gene encoding delta 1-pyrroline-5-carboxylate reductase was isolated by functional complementation in Escherichia coli and is found to be osmoregulated. Delauney, A.J., Verma, D.P. Mol. Gen. Genet. (1990) [Pubmed]
  13. Purification and characterization of cold-active L-glutamate dehydrogenase independent of NAD(P) and oxygen. Yamamura, A., Sakaguchi, T., Murakami, Y., Yokoyama, K., Tamiya, E. J. Biochem. (1999) [Pubmed]
  14. Role of 2-amino-3-carboxy-1,4-naphthoquinone, a strong growth stimulator for bifidobacteria, as an electron transfer mediator for NAD(P)(+) regeneration in Bifidobacterium longum. Yamazaki, S., Kano, K., Ikeda, T., Isawa, K., Kaneko, T. Biochim. Biophys. Acta (1999) [Pubmed]
  15. Hydroperoxide-induced loss of pyridine nucleotides and release of calcium from rat liver mitochondria. Lötscher, H.R., Winterhalter, K.H., Carafoli, E., Richter, C. J. Biol. Chem. (1980) [Pubmed]
  16. Mitochondrial calcium release as induced by Hg2+. Chávez, E., Holguín, J.A. J. Biol. Chem. (1988) [Pubmed]
  17. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Kushnareva, Y., Murphy, A.N., Andreyev, A. Biochem. J. (2002) [Pubmed]
  18. Stepwise versus concerted oxidative decarboxylation catalyzed by malic enzyme: a reinvestigation. Karsten, W.E., Cook, P.F. Biochemistry (1994) [Pubmed]
  19. Comparative genomics of NAD biosynthesis in cyanobacteria. Gerdes, S.Y., Kurnasov, O.V., Shatalin, K., Polanuyer, B., Sloutsky, R., Vonstein, V., Overbeek, R., Osterman, A.L. J. Bacteriol. (2006) [Pubmed]
  20. Inhibition of a major NAD(P)-linked oxidoreductase from rat liver cytosol by steroidal and nonsteroidal anti-inflammatory agents and by prostaglandins. Penning, T.M., Talalay, P. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  21. Citrate oscillates in liver and pancreatic beta cell mitochondria and in INS-1 insulinoma cells. MacDonald, M.J., Fahien, L.A., Buss, J.D., Hasan, N.M., Fallon, M.J., Kendrick, M.A. J. Biol. Chem. (2003) [Pubmed]
  22. Analysis of NAD(P)+/NAD(P)H cofactors by imprinted polymer membranes associated with ion-sensitive field-effect transistor devices and Au-quartz crystals. Pogorelova, S.P., Zayats, M., Bourenko, T., Kharitonov, A.B., Lioubashevski, O., Katz, E., Willner, I. Anal. Chem. (2003) [Pubmed]
  23. Scaling behavior in mitochondrial redox fluctuations. Ramanujan, V.K., Biener, G., Herman, B.A. Biophys. J. (2006) [Pubmed]
  24. Ca(2+)-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons. Duchen, M.R. Biochem. J. (1992) [Pubmed]
  25. The substitution of a single amino acid residue (Ser-116 --> Asp) alters NADP-containing glucose-fructose oxidoreductase of Zymomonas mobilis into a glucose dehydrogenase with dual coenzyme specificity. Wiegert, T., Sahm, H., Sprenger, G.A. J. Biol. Chem. (1997) [Pubmed]
  26. Glucagon-stimulated calcium efflux in the isolated perfused rat liver is dependent on cellular redox potential. Rashed, H.M., Patel, T.B. J. Biol. Chem. (1987) [Pubmed]
  27. Complex I impairment, respiratory compensations, and photosynthetic decrease in nuclear and mitochondrial male sterile mutants of Nicotiana sylvestris. Sabar, M., De Paepe, R., de Kouchkovsky, Y. Plant Physiol. (2000) [Pubmed]
  28. Steady-state kinetic mechanism of the NADP+- and NAD+-dependent reactions catalysed by betaine aldehyde dehydrogenase from Pseudomonas aeruginosa. Velasco-García, R., González-Segura, L., Muñoz-Clares, R.A. Biochem. J. (2000) [Pubmed]
  29. Effects of micromolar concentrations of free calcium ions on the reduction of heart mitochondrial NAD(P) by 2-oxoglutarate. Hansford, R.G., Castro, F. Biochem. J. (1981) [Pubmed]
  30. Molecular cloning and functional expression of bovine spleen ecto-NAD+ glycohydrolase: structural identity with human CD38. Augustin, A., Muller-Steffner, H., Schuber, F. Biochem. J. (2000) [Pubmed]
  31. Cancer therapy with beta-lapachone. Pardee, A.B., Li, Y.Z., Li, C.J. Current cancer drug targets. (2002) [Pubmed]
  32. Isolation and partial characterization of a full-length cDNA clone for 3 alpha-hydroxysteroid dehydrogenase: a potential target enzyme for nonsteroidal anti-inflammatory drugs. Pawlowski, J., Huizinga, M., Penning, T.M. Agents Actions (1991) [Pubmed]
  33. Minireview: hexose-6-phosphate dehydrogenase and redox control of 11{beta}-hydroxysteroid dehydrogenase type 1 activity. Hewitt, K.N., Walker, E.A., Stewart, P.M. Endocrinology (2005) [Pubmed]
  34. Human CD38 is an authentic NAD(P)+ glycohydrolase. Berthelier, V., Tixier, J.M., Muller-Steffner, H., Schuber, F., Deterre, P. Biochem. J. (1998) [Pubmed]
  35. A novel electro-optical sensor format with generic applicability for exploitation with NAD(P) dependent enzymes. Law, K.A., Warrington, R.J., McGurk, A., Higson, S.P. Biosensors & bioelectronics. (2003) [Pubmed]
  36. Recycling of NAD(P) by multienzyme systems immobilized by microencapsulation in artificial cells. Chang, T.M. Meth. Enzymol. (1987) [Pubmed]
  37. Rapid microspectrofluorometric studies in EL2 cells following intracellular accumulation of dibenzocarbazoles. Deumie, M., Kohen, E., Viallet, P., Kohen, C., Salmon, J.M. Histochemistry (1976) [Pubmed]
  38. Purification and characterization of the multiple forms of 3 alpha-hydroxysteroid dehydrogenase in rat liver cytosol. Ikeda, M., Hattori, H., Ikeda, N., Hayakawa, S., Ohmori, S. Hoppe-Seyler's Z. Physiol. Chem. (1984) [Pubmed]
  39. NADP-specific glutamate dehydrogenase in Metridium senile (L.). Bishop, S.H., Klotz, A., Drolet, L.L., Smullin, D.H., Hoffman, R.J. Comp. Biochem. Physiol., B (1978) [Pubmed]
WikiGenes - Universities