The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Synthesis of 2,3-bisphosphoglycerate synthase in erythroid cells.

Antiserum prepared from a rabbit which was immunized with human erythrocyte glycerate-2,3-P2 synthase was found to react with glycerate-2,3-P2 synthase in rabbit erythroid cells. By using this antiserum, it was proved that the specific activity of this enzyme was unchanged during the development of the rabbit erythroid cells. This leads us to conclude that the increased activity of glycerate-2,3-P2 synthase in developing erythroid cells (Narita, H., Ikura, K., Yanagawa, S., Sasaki, R., Chiba, H., Saimyoji, H., and Kumagai, N. (1980) J. Biol. Chem. 255, 5230-5235) is due to the accumulation of enzyme protein. There is at least a 16-fold increase in the level of this protein during development from bone marrow erythroid cells to erythrocytes. The synthesis of glycerate-2,3-P2 synthase was shown to occur in rabbit reticulocytes and bone marrow erythroid cells. These cells were incubated for protein synthesis and the protein synthesized was precipitated with the anti-glycerate-2,3-P2 synthase antiserum and separated on sodium dodecyl sulfate-polyacrylamide gels. The immunoprecipitated product was shown to produce fragments of the same molecular weight after digestion with V8 protease as did the pure glycerate-2,3-P2 synthase. The proportion of glycerate-2,3-P2 synthase synthesis in reticulocytes (0.04% of total protein synthesis) was comparable to the level of this protein in the cells (0.07% of the total protein).[1]


  1. Synthesis of 2,3-bisphosphoglycerate synthase in erythroid cells. Narita, H., Yanagawa, S., Sasaki, R., Chiba, H. J. Biol. Chem. (1981) [Pubmed]
WikiGenes - Universities