The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Erythroid Cells

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Erythroid Cells

 

Psychiatry related information on Erythroid Cells

 

High impact information on Erythroid Cells

  • This mutation impairs the promoter activity in erythroid cells by disrupting a binding site for the GATA1 erythroid transcription factor [7].
  • In expression studies, the activity of the mutant enzyme was reduced relative to that of the wild type, and this reduction was comparable to that in erythroid cells of the proband during relapse of the anemia; the enzyme activity expressed in the presence of pyridoxine was comparable to that in the proband's marrow cells during remission [8].
  • Erythropoietin (EPO) regulates the proliferation and differentiation of erythroid cells through interaction with its receptor (EPOR) [9].
  • A 5' element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila [10].
  • A monoclonal antibody to the chicken transferrin receptor (JS-8) blocked temperature-induced and spontaneous differentiation of avian erythroid cells transformed by ts- and wt-retroviral oncogenes [11].
 

Chemical compound and disease context of Erythroid Cells

 

Biological context of Erythroid Cells

 

Anatomical context of Erythroid Cells

  • In three established cell lines derived from adult non-erythroid tissue, low levels of transcription of the epsilon-globin gene occur, but the RNA molecules originate exclusively from one of the upstream sites identified in erythroid cells [22].
  • Biochemical analysis of extracts prepared from both nonerythroid and a variety of erythroid cell types suggests that NF-E4 is the trans-acting factor that confers definitive erythrocyte stage-specific transcriptional activation to the adult beta-globin gene [23].
  • Remarkably, ectopic coexpression of Myb and NF-M proteins in erythroid cells or fibroblasts was sufficient to induce endogenous markers of myeloid differentiation, like the mim-1 and lysozyme genes [24].
  • This leads us to propose a model for the insulator's ability to protect against extinction in the transformed cell lines and to function as a chromatin boundary for the chicken beta-globin locus in normal erythroid cells [25].
  • Interestingly, Lcrf1 null ES cells injected into wild-type blastocysts contributed to all mesodermally derived tissues examined, including erythroid cells producing hemoglobin [26].
 

Associations of Erythroid Cells with chemical compounds

 

Gene context of Erythroid Cells

  • One enigmatic aspect of GATA factor expression is that several GATA proteins, which ostensibly share the same DNA-binding site specificity, are coexpressed in erythroid cells [30].
  • The addition of anti-gp130 monoclonal antibodies but not anti-EPO antibody to the same culture completely abrogated the generation of erythroid cells [31].
  • This observation suggested that differentiation of hematopoietic stem/progenitor cells to erythroid cells progressed according to an intrinsic program and that EPO receptor (EPOR) could be replaced by other cytokine receptors [32].
  • How the GATA-1-FOG-1 complex controls the expression of distinct sets of gene in megakaryocytes and erythroid cells is not understood [33].
  • Isolation of DNA-binding sites by CASTing and band shift assays demonstrates the presence of an oligomeric complex involving Lmo2 which can bind to a bipartite DNA motif comprising two E-box sequences approximately 10 bp apart, which is distinct from that found in erythroid cells [34].
 

Analytical, diagnostic and therapeutic context of Erythroid Cells

References

  1. Binding of merocyanine 540 to normal and leukemic erythroid cells. Schlegel, R.A., Phelps, B.M., Waggoner, A., Terada, L., Williamson, P. Cell (1980) [Pubmed]
  2. Identification of a human heme exporter that is essential for erythropoiesis. Quigley, J.G., Yang, Z., Worthington, M.T., Phillips, J.D., Sabo, K.M., Sabath, D.E., Berg, C.L., Sassa, S., Wood, B.L., Abkowitz, J.L. Cell (2004) [Pubmed]
  3. In vitro-derived leukemic erythroid cell lines induced by a raf- and myc-containing retrovirus differentiate in response to erythropoietin. Klinken, S.P., Nicola, N.A., Johnson, G.R. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  4. Hydroxyurea increases fetal hemoglobin in cultured erythroid cells derived from normal individuals and patients with sickle cell anemia or beta-thalassemia. Fibach, E., Burke, L.P., Schechter, A.N., Noguchi, C.T., Rodgers, G.P. Blood (1993) [Pubmed]
  5. Mutations in the VHL gene in sporadic apparently congenital polycythemia. Pastore, Y.D., Jelinek, J., Ang, S., Guan, Y., Liu, E., Jedlickova, K., Krishnamurti, L., Prchal, J.T. Blood (2003) [Pubmed]
  6. Upstream G gamma-globin and downstream beta-globin sequences required for stage-specific expression in transgenic mice. Trudel, M., Magram, J., Bruckner, L., Costantini, F. Mol. Cell. Biol. (1987) [Pubmed]
  7. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Tournamille, C., Colin, Y., Cartron, J.P., Le Van Kim, C. Nat. Genet. (1995) [Pubmed]
  8. X-linked pyridoxine-responsive sideroblastic anemia due to a Thr388-to-Ser substitution in erythroid 5-aminolevulinate synthase. Cox, T.C., Bottomley, S.S., Wiley, J.S., Bawden, M.J., Matthews, C.S., May, B.K. N. Engl. J. Med. (1994) [Pubmed]
  9. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Witthuhn, B.A., Quelle, F.W., Silvennoinen, O., Yi, T., Tang, B., Miura, O., Ihle, J.N. Cell (1993) [Pubmed]
  10. A 5' element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Chung, J.H., Whiteley, M., Felsenfeld, G. Cell (1993) [Pubmed]
  11. Control of erythroid differentiation: possible role of the transferrin cycle. Schmidt, J.A., Marshall, J., Hayman, M.J., Ponka, P., Beug, H. Cell (1986) [Pubmed]
  12. Retroviral transfer of a human beta-globin/delta-globin hybrid gene linked to beta locus control region hypersensitive site 2 aimed at the gene therapy of sickle cell disease. Takekoshi, K.J., Oh, Y.H., Westerman, K.W., London, I.M., Leboulch, P. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  13. Changes in DNA associated with induction of erythroid differentiation by dimethyl sulfoxide in murine erythroleukemia cells. Terada, M., Nudel, U., Fibach, E., Rifkind, R.A., Marks, P.A. Cancer Res. (1978) [Pubmed]
  14. The v-ski oncogene cooperates with the v-sea oncogene in erythroid transformation by blocking erythroid differentiation. Larsen, J., Beug, H., Hayman, M.J. Oncogene (1992) [Pubmed]
  15. Erythroid cells rendered erythropoietin independent by infection with Friend spleen focus-forming virus show constitutive activation of phosphatidylinositol 3-kinase and Akt kinase: involvement of insulin receptor substrate-related adapter proteins. Nishigaki, K., Hanson, C., Ohashi, T., Thompson, D., Muszynski, K., Ruscetti, S. J. Virol. (2000) [Pubmed]
  16. Regulated expression of the c-myb and c-myc oncogenes during erythroid differentiation. Kirsch, I.R., Bertness, V., Silver, J., Hollis, G.F. J. Cell. Biochem. (1986) [Pubmed]
  17. An intrinsic but cell-nonautonomous defect in GATA-1-overexpressing mouse erythroid cells. Whyatt, D., Lindeboom, F., Karis, A., Ferreira, R., Milot, E., Hendriks, R., de Bruijn, M., Langeveld, A., Gribnau, J., Grosveld, F., Philipsen, S. Nature (2000) [Pubmed]
  18. A truncated erythropoietin receptor that fails to prevent programmed cell death of erythroid cells. Nakamura, Y., Komatsu, N., Nakauchi, H. Science (1992) [Pubmed]
  19. Autonomous developmental control of human embryonic globin gene switching in transgenic mice. Raich, N., Enver, T., Nakamoto, B., Josephson, B., Papayannopoulou, T., Stamatoyannopoulos, G. Science (1990) [Pubmed]
  20. A 3' enhancer contributes to the stage-specific expression of the human beta-globin gene. Trudel, M., Costantini, F. Genes Dev. (1987) [Pubmed]
  21. Inactivation of the human beta-globin gene by targeted insertion into the beta-globin locus control region. Kim, C.G., Epner, E.M., Forrester, W.C., Groudine, M. Genes Dev. (1992) [Pubmed]
  22. Multiple origins of transcription in the 4.5 Kb upstream of the epsilon-globin gene. Allan, M., Lanyon, W.G., Paul, J. Cell (1983) [Pubmed]
  23. The beta-globin stage selector element factor is erythroid-specific promoter/enhancer binding protein NF-E4. Gallarda, J.L., Foley, K.P., Yang, Z.Y., Engel, J.D. Genes Dev. (1989) [Pubmed]
  24. Myb and NF-M: combinatorial activators of myeloid genes in heterologous cell types. Ness, S.A., Kowenz-Leutz, E., Casini, T., Graf, T., Leutz, A. Genes Dev. (1993) [Pubmed]
  25. Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Pikaart, M.J., Recillas-Targa, F., Felsenfeld, G. Genes Dev. (1998) [Pubmed]
  26. The bZIP transcription factor LCR-F1 is essential for mesoderm formation in mouse development. Farmer, S.C., Sun, C.W., Winnier, G.E., Hogan, B.L., Townes, T.M. Genes Dev. (1997) [Pubmed]
  27. Lyn tyrosine kinase is essential for erythropoietin-induced differentiation of J2E erythroid cells. Tilbrook, P.A., Ingley, E., Williams, J.H., Hibbs, M.L., Klinken, S.P. EMBO J. (1997) [Pubmed]
  28. Biochemical characterization of RNA and protein synthesis in erythrocyte development. Grasso, J.A., Chromey, N.C., Moxey, C.F. J. Cell Biol. (1977) [Pubmed]
  29. Canavanine inhibits vimentin assembly but not its synthesis in chicken embryo erythroid cells. Moon, R.T., Lazarides, E. J. Cell Biol. (1983) [Pubmed]
  30. Ectopic expression of a conditional GATA-2/estrogen receptor chimera arrests erythroid differentiation in a hormone-dependent manner. Briegel, K., Lim, K.C., Plank, C., Beug, H., Engel, J.D., Zenke, M. Genes Dev. (1993) [Pubmed]
  31. Erythropoietin-independent erythrocyte production: signals through gp130 and c-kit dramatically promote erythropoiesis from human CD34+ cells. Sui, X., Tsuji, K., Tajima, S., Tanaka, R., Muraoka, K., Ebihara, Y., Ikebuchi, K., Yasukawa, K., Taga, T., Kishimoto, T., Nakahata, T. J. Exp. Med. (1996) [Pubmed]
  32. Erythroid progenitors differentiate and mature in response to endogenous erythropoietin. Sato, T., Maekawa, T., Watanabe, S., Tsuji, K., Nakahata, T. J. Clin. Invest. (2000) [Pubmed]
  33. Control of megakaryocyte-specific gene expression by GATA-1 and FOG-1: role of Ets transcription factors. Wang, X., Crispino, J.D., Letting, D.L., Nakazawa, M., Poncz, M., Blobel, G.A. EMBO J. (2002) [Pubmed]
  34. The oncogenic T cell LIM-protein Lmo2 forms part of a DNA-binding complex specifically in immature T cells. Grütz, G.G., Bucher, K., Lavenir, I., Larson, T., Larson, R., Rabbitts, T.H. EMBO J. (1998) [Pubmed]
  35. An erythrocyte-specific protein that binds to the poly(dG) region of the chicken beta-globin gene promoter. Lewis, C.D., Clark, S.P., Felsenfeld, G., Gould, H. Genes Dev. (1988) [Pubmed]
  36. Biogenesis of the avian erythroid membrane skeleton: receptor-mediated assembly and stabilization of ankyrin (goblin) and spectrin. Moon, R.T., Lazarides, E. J. Cell Biol. (1984) [Pubmed]
  37. Hepatocyte growth factor induces proliferation and differentiation of multipotent and erythroid hemopoietic progenitors. Galimi, F., Bagnara, G.P., Bonsi, L., Cottone, E., Follenzi, A., Simeone, A., Comoglio, P.M. J. Cell Biol. (1994) [Pubmed]
  38. Mechanism for fetal globin gene expression: role of the soluble guanylate cyclase-cGMP-dependent protein kinase pathway. Ikuta, T., Ausenda, S., Cappellini, M.D. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  39. Extended beta-globin locus control region elements promote consistent therapeutic expression of a gamma-globin lentiviral vector in murine beta-thalassemia. Hanawa, H., Hargrove, P.W., Kepes, S., Srivastava, D.K., Nienhuis, A.W., Persons, D.A. Blood (2004) [Pubmed]
 
WikiGenes - Universities