The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The role of the membrane in the regulation of activity of microsomal glucose-6-phosphatase.

The factors regulating glucose-6-phosphatase (EC 3.1.3.9) activity and substrate specificity in hepatic microsomes were studied by determining the rate-limiting reaction for the hydrolysis of glucose-6-P, and by examining the effect of detergent activation on phosphotransferase activity. Examination of the pre-steady state kinetics of glucose-6-phosphatase revealed that the steady state rate is determined by the rate of hydrolysis of the enzyme-P intermediate. Treatment of the enzyme with detergent does not alter the extent of the rapid release of glucose per mg of protein, but activates the steady state rate of catalytic turnover. Specificity of the enzyme was evaluated by comparing the effects of mannose and glucose as phosphate acceptors in the phosphotransferase reaction catalyzed by glucose-6-phosphatase. Untreated glucose-6-phosphatase discriminates against mannose as compared with glucose in that mannose and glucose bind to the enzyme-P intermediate of untreated enzyme, but mannose is not an acceptor of Pi. Mannose is an acceptor, however, after treatment of microsomes with detergent. These data cannot be explained in terms of the currently accepted "compartmentation" model for the regulation of glucose-6-phosphatase. The detergent-induced changes in kinetic properties appear to reflect alterations in the intrinsic characteristics of glucose-6-phosphatase, which could result from interaction with its membrane environment.[1]

References

 
WikiGenes - Universities