Alpha-pyridine nucleotides as substrates for a plasmid-specified dihydrofolate reductase.
The alpha epimers of pyridine nucleotides are almost totally inactive as reductants in dehydrogenase reactions. In contrast, the R plasmid R67-specified dihydrofolate reductase (5,6,7,8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) isolated from trimethoprim-resistant Escherichia coli utilized alpha-NADPH and alpha-NADH in addition to the "normal" beta-epimers. The enzymes from bacterial and mammalian sources used only beta-NADPH and beta-NADH. THe Km value for alpha-NADPH (16 microM) was 4-fold greater than that for beta-NADPH (4 microM), while the maximal velocity of the alpha-NADPH-catalyzed reaction was 70% of that seen with the beta-NADPH. beta-NADP+ and alpha-NADP+ were competitive inhibitors of the R67 enzyme. Pyridine nucleotide analogues such as deamino- and acetyl-NADPH were used readily by bacterial, plasmid, and mammalian enzymes, whereas thio-NADPH was used only by the plasmid enzyme. These data suggest that the enzyme from R plasmid R67 possesses a pyridine nucleotide binding site different from that of other dihydrofolate reductases and dehydrogenases.[1]References
- Alpha-pyridine nucleotides as substrates for a plasmid-specified dihydrofolate reductase. Smith, S.L., Burchall, J.J. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg