The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Diffusion of reactive metabolites out of hepatocytes: studies with bromobenzene.

We have developed a simple experimental technique which allows the determination of the relative rates of intracellular inactivation of chemically reactive metabolites and their diffusion out of isolated rat hepatocytes. By using bromobenzene as a model compound we have demonstrated that bromobenzene-3, 4-oxide generated within hepatocytes is sufficiently stable to leave the endoplasmic reticulum in which it is formed, traverse the cytoplasm and cross the cell membrane to the external environment. The addition of varying amounts of protein, which serves as an external sink to trap the epoxide as a covalently bound adduct, permits the calculation of the relative rates at which the epoxide is inactivated within the cells and diffuses out of the cells. As much as 35% of bromobenzene-3,4-oxide is capable of leaving hepatocytes and being trapped as a covalently bound adduct to glutathione (GSH)-transferase B. The extensive diffusion of bromobenzene-3,4-oxide may play an important role in the intercellular toxicity of this compound within the liver and perhaps may contribute to extrahepatic toxicity. The addition of GSH-transferase B to isolated hepatocyte suspensions caused a decrease in the formation of the 3,4-dihydrodiol, p-bromophenol and o- and p-bromophenol glucuronides, an increase in the formation of bromobenzene GSH conjugates, but did not affect intracellular covalent binding. Kinetic analyses of the data revealed that, in the absence of GSH-transferase B, nearly all of the bromobenzene GSH conjugates are formed within hepatocytes as the epoxide is formed, whereas rearrangement of bromobenzene-3,4-oxide to p-bromophenol and hydration to bromobenzene-3,4-dihydrodiol occurs almost exclusively outside the hepatocytes.(ABSTRACT TRUNCATED AT 250 WORDS)[1]

References

  1. Diffusion of reactive metabolites out of hepatocytes: studies with bromobenzene. Monks, T.J., Lau, S.S., Gillette, J.R. J. Pharmacol. Exp. Ther. (1984) [Pubmed]
 
WikiGenes - Universities