The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Extracellular Na+ and initiation of DNA synthesis: role of intracellular pH and K+.

Initiation of DNA synthesis in confluent quiescent 3T3 cell cultures stimulated by epidermal growth factor ( EGF), vasopressin, and insulin was abolished by removing extracellular Na+. The inhibition was reversible, time- and Na+-concentration-dependent, and not due to an effect on binding or internalization of 125I- EGF. Stimulation by combinations of other growth factors with different mechanisms of action was also affected by decreasing extracellular Na+, but with different half-maximal Na+ concentrations. When choline was used as an osmotic substitute for Na+, the decrease in DNA synthesis was correlated with the decrease in intracellular K+. In contrast, when sucrose was used there was stimulation of the Na+-K+ pump and maintenance of intracellular K+ that resulted in a somewhat higher rate of DNA synthesis at lowered extracellular Na+ compared to choline. Mitogenesis induced by epidermal growth factor, vasopressin, and insulin led to cytoplasmic alkalinization as determined by an increase in uptake of the weak acid 5,5-dimethyloxazolidine-2,4-dione. Experimental decrease in extracellular Na+ blocked this cellular alkalinization. Therefore, under some conditions the supply of extracellular Na+ may limit cellular proliferation because of a reduction in the provision of Na+ to the Na+/H+ antiport and resultant failure of alkalinization. We conclude that Na+ flux and its effect on intracellular K and pH has a major role in the complex system that regulates proliferation.[1]

References

 
WikiGenes - Universities