Oligomerization of malate synthase during glyoxysome biosynthesis.
The octameric malate synthase, found in glyoxysomes of plants, is synthesized as monomeric precursor in the cytoplasm. The precursor form does not possess a different subunit molecular weight than the mature organellar enzyme, but differs from the organellar protein by not oligomerizing and aggregating. This was shown by synthesis in a cell-free reticulocyte lysate system programmed with cucumber poly A+-mRNA followed by immunoprecipitation of the radiolabeled translation products. The precursor form of malate synthase was also detected in vivo in the cytosol of pulse-labeled cucumber cotyledons after immunoprecipitation of the radiolabeled polypeptide. At low salt concentrations, mature malate synthase can be converted into aggregated forms. However, the precursor form obtained either by in vitro translation or by extraction from the cytosol after short pulses of radioactive methionine, could neither be oligomerized into the octameric form nor aggregated into the 100-S form. Processing of malate synthase, assumed to be a requisite for oligomerization, took place rapidly in the glyoxysomes, but proceeded only slowly in the cytosol. This was demonstrated both by the uptake of in vitro-translated malate synthase into glyoxysomes, and by analysis of newly synthesized malate synthase detectable in glyoxysomes in vivo. In both cases the octamer was by far the predominant form.[1]References
- Oligomerization of malate synthase during glyoxysome biosynthesis. Kruse, C., Kindl, H. Arch. Biochem. Biophys. (1983) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg