The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

N-acetyl muramyl dipeptide stimulation of bone resorption in tissue culture.

N-Acetyl-muramyl-L-alanyl-D-isoglutamine ( MDP), a structurally defined fragment of bacterial peptidoglycan, stimulated significant release of previously incorporated 45Ca from fetal rat bones in tissue culture over the concentration range of 0.1 to 10.0 micrograms/ml. MDP-Stimulated bone resorption was not inhibited by the addition of the prostaglandin synthetase inhibitor indomethacin to the culture medium. MDP was neither mitogenic for nor stimulated the release of osteoclast-activating factor from cultured human peripheral blood mononuclear cells. Thus, MDP-stimulated bone resorption in vitro is mediated by a mechanism which is not dependent upon prostaglandins or osteoclast-activating factor. 6-O-Stearoyl-N-acetyl-muramyl-L-alanyl-D-isoglutamine, a lipophilic analog of MDP, was slightly more potent than MDP. Two diastereomers of MDP, N-acetyl-muramyl-L-alanyl-L-isoglutamine and N-acetyl-muramyl-D-alanyl-D-isoglutamine, which are inactive as adjuvants, were at least 1,000 times less active than MDP in stimulating bone resorption. The stereochemical specificity for bone-resorptive activity paralleled that required for adjuvant activity, macrophage activation, and activation of the reticuloendothelial system.[1]

References

 
WikiGenes - Universities