The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Effects of dietary and in vitro 2(3)-t-butyl-4-hydroxy-anisole and other phenols on hepatic enzyme activities in mice.

Six phenols [2(3)-t-butyl-4-hydroxyanisole (BHA), 2-t-butylphenol, 4-methoxyphenol, 4-methylmercaptophenol, t-butylhydroquinone and 2,6-di-t-butylphenol] previously shown to be inhibitors of benzo(a)pyrene-induced neoplasia, were examined for their ability to induce in vivo changes in hepatic mono-oxygenase and detoxication enzyme activities, and to act as mono-oxygenase inhibitors when added in vitro. (1) Generally it was found that cytochrome P450 levels were depressed, only 2,6-di-t-butylphenol caused a 2-fold induction (2) Mono-oxygenase activities were significantly altered; BHA and 2,6-di-t-butylphenol caused microsomes to show substantial increases in aniline hydroxylase and peroxidase activities. These microsomes, along with 4-methoxyphenol microsomes, also showed a substantial reduction in DNA binding of benzo(a)pyrene (BaP) metabolites relative to metabolism. (3) Detoxication enzymes glutathione S-transferases and epoxide hydratase were readily induced, the order of effectiveness being: BHA approximately 2,6-di-t-butylphenol greater than 4-methoxyphenol greater than 2-t-butylphenol approximately t-butylhydroquinone (4-methylmercaptophenol failed to induce). (4) In vitro ability to inhibit BaP metabolism and DNA-binding ability was: 2,6-di-t-butylphenol greater than or equal to BHA approximately 2-t-butylphenol greater than t-butylhydroquinone greater than 4-methylmercaptophenol greater than 4-methoxyphenol. (5) Ability in vitro to discharge the activated oxygen complex of cytochrome P450 was: 2,6-di-t-butylphenol approximately 2-t-butylphenol greater than BHA greater t-butylhydroquinone greater than 4-methylmercaptophenol greater than 4-methoxyphenol. The results are consistent with the theory that inhibition of neoplasia is related to inducibility of detoxication enzymes, though alterations in cytochrome P450 could play a significant role in some cases.[1]

References

 
WikiGenes - Universities