The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Assimilatory sulfur metabolism in marine microorganisms: characteristics and regulation of sulfate transport in Pseudomonas halodurans and Alteromonas luteo-violaceus.

Sulfate transport capacity was not regulated by cysteine, methionine, or glutathione in Pseudomonas halodurans, but growth on sulfate or thiosulfate suppressed transport. Subsequent sulfur starvation of cultures grown on all sulfur sources except glutathione stimulated uptake. Only methionine failed to regulate sulfate transport in Alteromonas luteo-violaceus, and sulfur starvation of all cultures enhanced transport capacity. During sulfur starvation of sulfate-grown cultures of both bacteria, the increase in transport capacity was mirrored by a decrease in the low-molecular-weight organic sulfur pool. Little metabolism of endogenous inorganic sulfate occurred. Cysteine was probably the major regulatory compound in A. luteo-violaceus, but an intermediate in sulfate reduction, between sulfate and cysteine, controlled sulfate transport in P. halodurans. Kinetic characteristics of sulfate transport in the marine bacteria were similar to those of previously reported nonmarine systems in spite of significant regulatory differences. Sulfate and thiosulfate uptake in P. halodurans responded identically to inhibitors, were coordinately regulated by growth on various sulfur compounds and sulfur starvation, and were mutually competitive inhibitors of transport, suggesting that they were transported by the same mechanism. The affinity of P. halodurans for thiosulfate was much greater than for sulfate.[1]

References

 
WikiGenes - Universities