The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Heparin-like molecules on the cell surface potentiate binding of diphtheria toxin to the diphtheria toxin receptor/membrane-anchored heparin- binding epidermal growth factor-like growth factor.

Diphtheria toxin receptor (DTR), which is identical to the membrane-anchored form of heparin-binding EGF-like growth factor (proHB-EGF), has a high affinity for heparin. We studied the effect of heparin-like molecules on the binding of diphtheria toxin (DT) to DTR/proHB-EGF. Mutant Chinese hamster ovary (CHO) cells deficient in heparan sulfate (HS) proteoglycans were about 15 times less sensitive to DT than wild type CHO-K1 cells. When free heparan sulfate or heparin was added to the culture medium, DT sensitivity of the mutant cells was fully restored. Studies of binding of 125I-labeled DT to HS-deficient CHO cells transfected with human DTR/proHB-EGF cDNA indicated that the increased sensitivity to DT after addition of heparin is due to increased binding of DT to cells. Vero cells display a relatively large amount of heparan sulfate residues compared to CHO-K1 cells or L cells. Enhancement of DT binding by the addition of heparin was also observed with CHO-K1 cells and L cells that had been transfected with human DTR/proHB-EGF cDNA, but the degree of enhancement was less than that observed with the HS-deficient CHO cells. Addition of heparin did not affect DT binding or DT sensitivity of Vero cells. Heparin-dependent binding was observed when intact Vero cells were treated with heparitinase or when the cell membrane was solubilized with a neutral detergent. Scatchard plot analysis for the binding of DT to a recombinant HB-EGF in vitro and to L cells expressing human DTR/proHB-EGF revealed that heparin increases the affinity of DTR/proHB-EGF for DT but does not change the number of binding sites. Although DRAP27/CD9 is known to enhance DT binding to DTR/proHB-EGF, the results indicate that heparin and DRAP27/CD9 increase DT binding by independent mechanisms. Thus, heparin-like molecules, probably in the form of heparan sulfate proteoglycan on the cell surface, are a third factor required for maximal DT binding activity of cells.[1]

References

 
WikiGenes - Universities