The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A possible docking and fusion particle for synaptic transmission.

Several proteins have been implicated in the rapid (millisecond) calcium-controlled release of transmitters at nerve endings, including soluble N-ethylmaleimide-sensitive fusion protein ( NSF) and soluble NSF attachment protein (alpha-SNAP), the synaptic SNAP receptor (SNARE) and the calcium-binding protein synaptotagmin, which may function as a calcium sensor in exocytosis. A second SNAP isoform (beta-SNAP), which is 83% identical to alpha-SNAP, is highly expressed in brain, but its role is still unclear. Here we show that these proteins assemble cooperatively to form a docking and fusion complex. beta-SNAP (but not alpha-SNAP) binds synaptotagmin and recruits NSF, indicating that the complex may link the process of membrane fusion to calcium entry by attaching a specialized fusion protein (beta-SNAP) to a calcium sensor (synaptotagmin). Polyphosphoinositols that block transmitter release, inositol 1,3,4,5-tetrakisphosphate (InsP4), inositol 1,3,4,5,6-pentakisphosphate (InsP5) and inositol 1,2,3,4,5,6-hexakisphosphate (InsP6), also block the assembly of the particle by preventing beta-SNAP from binding to synaptotagmin.[1]

References

  1. A possible docking and fusion particle for synaptic transmission. Schiavo, G., Gmachl, M.J., Stenbeck, G., Söllner, T.H., Rothman, J.E. Nature (1995) [Pubmed]
 
WikiGenes - Universities