The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The developmental onset of NMDA receptor-channel activity during neuronal migration.

Patch-clamp recordings of granule cells in thin slices of developing rat cerebellum maintained in vitro displayed spontaneous single-channel activity mediated via activation of N-methyl-D-aspartate (NMDA) receptors. The frequency of tonic single-channel activity was reversibly inhibited by the NMDA receptor/channel antagonists D-2-amino-5-phosphonovalerate (D-AP5), 7-chloro-kynurenate (7-Cl-Kynu) and MgCl2, potentiated by glycine, and unaffected by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or tetrodotoxin (TTX). Tonic channel activity was also reversibly inhibited by enzymatic degradation of endogenous glutamate by glutamate pyruvate transaminase, which did not affect the NMDA sensitivity of granule cells. Both the frequency of spontaneous channel activity and the NMDA sensitivity were low in premigratory cells of the external germinal layer (EGL), with large increases observed in migrating cells in the molecular layer (ML) and in postmigratory cells within the internal granule cell layer (GCL). Tonic channel activity was enhanced by the glutamate uptake inhibitor L-alpha-aminoadipate (L-alpha-AA), the degree of enhancement being greater in the EGL than the GCL. The results demonstrate that a dramatic increase in the tonic NMDA receptor-channel activity occurs during the stages of granule cell differentiation, migration and synaptogenesis, which is driven by endogenous glutamate release and regulated by NMDA receptor density and local glutamate uptake.[1]

References

 
WikiGenes - Universities