The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Metaphase chromosome structure: bands arise from a differential folding path of the highly AT-rich scaffold.

Using the highly AT-specific fluorochrome daunomycin, a longitudinal optical signal called AT queue, thought to arise from a line-up of the highly AT-rich scaffold-associated regions (SARs) by the scaffolding, was identified in native chromosomes. Fluorescence banding is proposed to result from a differential folding path of the AT queue during its progression from telomere to telomere. The AT queue is tightly coiled or folded in a Q band, the resulting transverse striations across the chromatid, which also represent Giemsa subbands, generating a bright AT-rich signal over the Q region. The R bands, in contrast, contain a more central (unfolded) AT queue, yielding an AT-dull signal over the R regions. The AT queue is identified by immunofluorescence against topoisomerase II (topo II) and HMG-I/Y as the scaffold of native chromosomes; the fluorescence signal from both proteins is akin to a detailed Q-type banding pattern. Native chromosomes appear assembled according to the loop-scaffold model.[1]

References

 
WikiGenes - Universities