The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Chromatids

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Chromatids

 

High impact information on Chromatids

 

Chemical compound and disease context of Chromatids

 

Biological context of Chromatids

  • The unique features of prezygotene chromosomes are a partial separation of sister chromatids, an elongation of knob heterochromatin, an increase in surface complexity, a 50% increase in total chromosome volume, and a peripheral localization and alignment of telomeric, but not proximal, loci [15].
  • Proteolytic cleavage of cohesin's Sccl subunit at the metaphase to anaphase transition is essential for sister chromatid separation and depends on a conserved protein called separin [16].
  • Mutations in the Drosophila mei-S332 gene cause premature separation of the sister chromatids in late anaphase of meiosis I [17].
  • Centromeres move apart at the metaphase-anaphase transition and Cyclin B is degraded, but sister chromatids remain connected, resulting in chromatin bridging [18].
  • Cohesion between sister chromatids during G2 and M phases depends on the "cohesin" protein Scc1p (Mcd1p) [19].
 

Anatomical context of Chromatids

 

Associations of Chromatids with chemical compounds

  • We speculate that this self-recognition of guanine-rich motifs of DNA serves to bring together, and to zipper up in register, the four homologous chromatids during meiosis [25].
  • We show here that H2AX serine 139 enforces efficient homologous recombinational repair of a chromosomal double-strand break (DSB) by using the sister chromatid as a template [26].
  • RESULTS: Our results showed no evidence for the influence of a shared family environment on bleomycin-induced chromatid breaks [27].
  • Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells [28].
  • 1-beta-D-arabinofuranosylcytosine-induced chromatid breakage: effect of inhibition of DNA synthesis [22].
 

Gene context of Chromatids

  • We show that destruction of Pds1p is the APC's sole role in triggering Scc1p's dissociation from chromatids and that Pds1p forms a stable complex with a 180 kDa protein called Esp1p, which is essential for the dissociation of Scc1p from sister chromatids and for their separation [19].
  • CDC23 is required at the metaphase/anaphase transition to separate sister chromatids, and we speculate that it might promote proteolysis of proteins that hold sister chromatids together [29].
  • Here we show that XRCC2 is essential for the efficient repair of DNA double-strand breaks by homologous recombination between sister chromatids [30].
  • Higher levels of nondegradable PIM, as well as overexpression of wild-type PIM, inhibit sister chromatid separation [31].
  • A functional Rad53 checkpoint kinase that is known to protect the integrity of the sister chromatid junctions is required for the accumulation of recombination intermediates in sgs1 mutants [32].
 

Analytical, diagnostic and therapeutic context of Chromatids

References

  1. NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Tonkin, E.T., Wang, T.J., Lisgo, S., Bamshad, M.J., Strachan, T. Nat. Genet. (2004) [Pubmed]
  2. Elevated telomere-telomere recombination in WRN-deficient, telomere dysfunctional cells promotes escape from senescence and engagement of the ALT pathway. Laud, P.R., Multani, A.S., Bailey, S.M., Wu, L., Ma, J., Kingsley, C., Lebel, M., Pathak, S., DePinho, R.A., Chang, S. Genes Dev. (2005) [Pubmed]
  3. Genetic susceptibility to head and neck squamous cell carcinoma. Cloos, J., Spitz, M.R., Schantz, S.P., Hsu, T.C., Zhang, Z.F., Tobi, H., Braakhuis, B.J., Snow, G.B. J. Natl. Cancer Inst. (1996) [Pubmed]
  4. Hypersensitivity to G2 chromatid radiation damage in familial dysplastic naevus syndrome. Sanford, K.K., Tarone, R.E., Parshad, R., Tucker, M.A., Greene, M.H., Jones, G.M. Lancet (1987) [Pubmed]
  5. Pituitary tumor transforming gene-null male mice exhibit impaired pancreatic beta cell proliferation and diabetes. Wang, Z., Moro, E., Kovacs, K., Yu, R., Melmed, S. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  6. The structure and function of SMC and kleisin complexes. Nasmyth, K., Haering, C.H. Annu. Rev. Biochem. (2005) [Pubmed]
  7. How do so few control so many? Nasmyth, K. Cell (2005) [Pubmed]
  8. The yeast APC/C subunit Mnd2 prevents premature sister chromatid separation triggered by the meiosis-specific APC/C-Ama1. Oelschlaegel, T., Schwickart, M., Matos, J., Bogdanova, A., Camasses, A., Havlis, J., Shevchenko, A., Zachariae, W. Cell (2005) [Pubmed]
  9. Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Alexandru, G., Uhlmann, F., Mechtler, K., Poupart, M.A., Nasmyth, K. Cell (2001) [Pubmed]
  10. Sister chromatid differentiation and cell-cycle-specific patterns in chronic myelocytic leukemia and normal bone marrow. Becher, R., Schmidt, C.G. Int. J. Cancer (1982) [Pubmed]
  11. Position of chromosomes in the human interphase nucleus. An analysis of nonhomologous chromatid translocations in lymphocyte cultures after Trenimon treatment and from patients with Fanconi's anemia and Bloom's syndrome. Hager, H.D., Schroeder-Kurth, T.M., Vogel, F. Hum. Genet. (1982) [Pubmed]
  12. Increased frequency of chromatid breaks in lymphocytes of heterozygotes of ataxia telangiectasia after in vitro treatment with caffeine. Pawlak, A.L., Kotecki, M., Ignatowicz, R. Mutat. Res. (1990) [Pubmed]
  13. Enhancement of frequencies of restriction endonuclease-induced chromatid breaks by arabinoside adenine in normal human and ataxia telangiectasia cells. Liu, N., Bryant, P.E. Int. J. Radiat. Biol. (1997) [Pubmed]
  14. Paracetamol inhibits replicative DNA synthesis and induces sister chromatid exchange and chromosomal aberrations by inhibition of ribonucleotide reductase. Hongslo, J.K., Bjørge, C., Schwarze, P.E., Brøgger, A., Mann, G., Thelander, L., Holme, J.A. Mutagenesis (1990) [Pubmed]
  15. Meiotic chromosome pairing in maize is associated with a novel chromatin organization. Dawe, R.K., Sedat, J.W., Agard, D.A., Cande, W.Z. Cell (1994) [Pubmed]
  16. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Uhlmann, F., Wernic, D., Poupart, M.A., Koonin, E.V., Nasmyth, K. Cell (2000) [Pubmed]
  17. Mei-S332, a Drosophila protein required for sister-chromatid cohesion, can localize to meiotic centromere regions. Kerrebrock, A.W., Moore, D.P., Wu, J.S., Orr-Weaver, T.L. Cell (1995) [Pubmed]
  18. Chromatid segregation at anaphase requires the barren product, a novel chromosome-associated protein that interacts with Topoisomerase II. Bhat, M.A., Philp, A.V., Glover, D.M., Bellen, H.J. Cell (1996) [Pubmed]
  19. An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Ciosk, R., Zachariae, W., Michaelis, C., Shevchenko, A., Mann, M., Nasmyth, K. Cell (1998) [Pubmed]
  20. p93dis1, which is required for sister chromatid separation, is a novel microtubule and spindle pole body-associating protein phosphorylated at the Cdc2 target sites. Nabeshima, K., Kurooka, H., Takeuchi, M., Kinoshita, K., Nakaseko, Y., Yanagida, M. Genes Dev. (1995) [Pubmed]
  21. Joint effect of insulin-like growth factors and mutagen sensitivity in lung cancer risk. Wu, X., Yu, H., Amos, C.I., Hong, W.K., Spitz, M.R. J. Natl. Cancer Inst. (2000) [Pubmed]
  22. 1-beta-D-arabinofuranosylcytosine-induced chromatid breakage: effect of inhibition of DNA synthesis. Benedict, W.F., Rucker, N., Karon, M. J. Natl. Cancer Inst. (1975) [Pubmed]
  23. Dependency of sister chromatid exchange in T- and B-cells on the incorporation of deoxyribonucleosides into chromosomal DNA. Shiraishi, Y., Weinfeld, H., Minowada, J., Sandberg, A.A. J. Natl. Cancer Inst. (1976) [Pubmed]
  24. Differential chromatid damage induced by 6-thioguanine in CHO cells. Maybaum, J., Mandel, H.G. Exp. Cell Res. (1981) [Pubmed]
  25. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Sen, D., Gilbert, W. Nature (1988) [Pubmed]
  26. Control of sister chromatid recombination by histone H2AX. Xie, A., Puget, N., Shim, I., Odate, S., Jarzyna, I., Bassing, C.H., Alt, F.W., Scully, R. Mol. Cell (2004) [Pubmed]
  27. Inherited susceptibility to bleomycin-induced chromatid breaks in cultured peripheral blood lymphocytes. Cloos, J., Nieuwenhuis, E.J., Boomsma, D.I., Kuik, D.J., van der Sterre, M.L., Arwert, F., Snow, G.B., Braakhuis, B.J. J. Natl. Cancer Inst. (1999) [Pubmed]
  28. Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative. Parshad, R., Gantt, R., Sanford, K.K., Jones, G.M., Tarone, R.E. J. Natl. Cancer Inst. (1982) [Pubmed]
  29. Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding yeast. Irniger, S., Piatti, S., Michaelis, C., Nasmyth, K. Cell (1995) [Pubmed]
  30. Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Johnson, R.D., Liu, N., Jasin, M. Nature (1999) [Pubmed]
  31. Degradation of Drosophila PIM regulates sister chromatid separation during mitosis. Leismann, O., Herzig, A., Heidmann, S., Lehner, C.F. Genes Dev. (2000) [Pubmed]
  32. Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Liberi, G., Maffioletti, G., Lucca, C., Chiolo, I., Baryshnikova, A., Cotta-Ramusino, C., Lopes, M., Pellicioli, A., Haber, J.E., Foiani, M. Genes Dev. (2005) [Pubmed]
  33. Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Sharp, D.J., Rogers, G.C., Scholey, J.M. Nat. Cell Biol. (2000) [Pubmed]
  34. Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. Cimini, D., Howell, B., Maddox, P., Khodjakov, A., Degrassi, F., Salmon, E.D. J. Cell Biol. (2001) [Pubmed]
  35. Chromosome elimination in micronuclei: a common cause of hypoploidy. Ford, J.H., Schultz, C.J., Correll, A.T. Am. J. Hum. Genet. (1988) [Pubmed]
  36. Spontaneous and ionizing radiation-induced chromosomal abnormalities in p53-deficient mice. Bouffler, S.D., Kemp, C.J., Balmain, A., Cox, R. Cancer Res. (1995) [Pubmed]
  37. Hormone-induced chromosomal instability in p53-null mammary epithelium. Pati, D., Haddad, B.R., Haegele, A., Thompson, H., Kittrell, F.S., Shepard, A., Montagna, C., Zhang, N., Ge, G., Otta, S.K., McCarthy, M., Ullrich, R.L., Medina, D. Cancer Res. (2004) [Pubmed]
 
WikiGenes - Universities