The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Further perspective on the catalytic core and secondary structure of ribonuclease P RNA.

Phylogenetic comparative analyses of RNase P RNA-encoding gene sequences from Chlorobium limicola, Chlorobium tepidum, Bacteroides thetaiotaomicron, and Flavobacterium yabuuchiae refine the secondary structure model of the general (eu)bacterial RNase P RNA and show that a highly conserved feature of that RNA is not essential. Two helices, comprised of 2 base pairs each, are added to the secondary structure model and form part of a cruciform in the RNA. Novel sequence variations in the B. thetaiotaomicron and F. yabuuchiae RNA indicate the likelihood that all secondary structure resulting from canonical base-pairing has been detected: there are no remaining unpaired, contiguous, canonical complementarities in the structure model common to all bacterial RNase P RNAs. A nomenclature for the elements of the completed secondary structure model is proposed. The Chlorobium RNase P RNAs lack a stem-loop structure that is otherwise universally present and highly conserved in structure in other (eu)bacterial RNase P RNAs. The Chlorobium RNAs are nevertheless catalytic, with kinetic properties similar to those of RNase P RNAs of Escherichia coli and other Bacteria. Removal of this stem-loop structure from the E. coli RNA affects neither its affinity for nor its catalytic rate for cleavage of a precursor transfer RNA substrate. These results show that this structural element does not play a direct role in substrate binding or catalysis.[1]

References

  1. Further perspective on the catalytic core and secondary structure of ribonuclease P RNA. Haas, E.S., Brown, J.W., Pitulle, C., Pace, N.R. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
 
WikiGenes - Universities