The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Chlorobium

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Chlorobium

  • The Chlorobium RNAs are nevertheless catalytic, with kinetic properties similar to those of RNase P RNAs of Escherichia coli and other Bacteria [1].
  • The reactions of Chlorobium flavocytochrome c with photoreduced lumiflavin are similar to those previously found with Chromatium vinosum flavocytochrome c [Cusanovich, M. A., & Tollin, G. (1981) Biochemistry 19, 3343-3347] in that a protein-bound flavin semiquinone is an intermediate in the pathway of reduction [2].
  • Iron-sulfur clusters are the terminal electron acceptors of the photosynthetic reaction centers of green sulfur bacteria and photosystem I. We have studied electron-transfer reactions involving these clusters in the green sulfur bacterium Chlorobium tepidum, using flash-absorption spectroscopic measurements [3].
  • In contrast, the hydrogenases of the purple nonsulfur bacterium Rhodobacter capsulatus B10 and the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum exhibit maximum activity at Eh greater than -300 mV, favourable only for H2 uptake [4].
 

High impact information on Chlorobium

 

Chemical compound and disease context of Chlorobium

  • It shows more similarity to the Chlorobium FC flavin subunit (60%) than do the two heme subunits [10].
  • Plasmids containing DNA from the green photosynthetic bacterium Chlorobium vibrioforme complement a heme-requiring Escherichia coli hemB mutant that is deficient in porphobilinogen (PBG) synthase activity [11].
  • However, soluble cytochrome c-551 and flavocytochrome c (FCSD) have previously been implicated in the oxidation of thiosulfate and sulfide on the basis of enzyme assays in Chlorobium [12].
  • The iron-sulfur cluster degradation and reconstitution protocols also led to inhibition and restoration of NADP+ photoreduction by the membrane preparation, providing unequivocal evidence for the function of the centers FX and FAFB in the physiological electron-transfer sequence on the acceptor side of the Chlorobium reaction center [13].
  • A novel type of NADPH-dependent sepiapterin reductase, which catalysed uniquely the reduction of sepiapterin to l-threo-dihydrobiopterin, was purified 533-fold from the cytosolic fraction of Chlorobium tepidum, with an overall yield of 3% [14].
 

Biological context of Chlorobium

 

Anatomical context of Chlorobium

 

Gene context of Chlorobium

 

Analytical, diagnostic and therapeutic context of Chlorobium

References

  1. Further perspective on the catalytic core and secondary structure of ribonuclease P RNA. Haas, E.S., Brown, J.W., Pitulle, C., Pace, N.R. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  2. Intramolecular electron transfer in Chlorobium thiosulfatophilum flavocytochrome c. Tollin, G., Meyer, T.E., Cusanovich, M.A. Biochemistry (1982) [Pubmed]
  3. Photoreduction and reoxidation of the three iron-sulfur clusters of reaction centers of green sulfur bacteria. Sétif, P., Seo, D., Sakurai, H. Biophys. J. (2001) [Pubmed]
  4. Redox properties and active center of phototrophic bacteria hydrogenases. Zorin, N.A. Biochimie (1986) [Pubmed]
  5. A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Hanson, T.E., Tabita, F.R. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  6. Photosynthetic reaction center genes in green sulfur bacteria and in photosystem 1 are related. Büttner, M., Xie, D.L., Nelson, H., Pinther, W., Hauska, G., Nelson, N. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  7. Structure of Chlorobium tepidum sepiapterin reductase complex reveals the novel substrate binding mode for stereospecific production of L-threo-tetrahydrobiopterin. Supangat, S., Seo, K.H., Choi, Y.K., Park, Y.S., Son, D., Han, C.D., Lee, K.H. J. Biol. Chem. (2006) [Pubmed]
  8. Function of a PscD subunit in a homodimeric reaction center complex of the photosynthetic green sulfur bacterium Chlorobium tepidum studied by insertional gene inactivation. Regulation of energy transfer and ferredoxin-mediated NADP+ reduction on the cytoplasmic side. Tsukatani, Y., Miyamoto, R., Itoh, S., Oh-Oka, H. J. Biol. Chem. (2004) [Pubmed]
  9. Rubredoxin from the green sulfur bacterium Chlorobium tepidum functions as an electron acceptor for pyruvate ferredoxin oxidoreductase. Yoon, K.S., Hille, R., Hemann, C., Tabita, F.R. J. Biol. Chem. (1999) [Pubmed]
  10. Covalent structure of the diheme cytochrome subunit and amino-terminal sequence of the flavoprotein subunit of flavocytochrome c from Chromatium vinosum. Van Beeumen, J.J., Demol, H., Samyn, B., Bartsch, R.G., Meyer, T.E., Dolata, M.M., Cusanovich, M.A. J. Biol. Chem. (1991) [Pubmed]
  11. Structure and expression of the Chlorobium vibrioforme hemB gene and characterization of its encoded enzyme, porphobilinogen synthase. Rhie, G., Avissar, Y.J., Beale, S.I. J. Biol. Chem. (1996) [Pubmed]
  12. Identification of a thiosulfate utilization gene cluster from the green phototrophic bacterium Chlorobium limicola. Verté, F., Kostanjevecki, V., De Smet, L., Meyer, T.E., Cusanovich, M.A., Van Beeumen, J.J. Biochemistry (2002) [Pubmed]
  13. Photosynthetic electron-transfer reactions in the green sulfur bacterium Chlorobium vibrioforme: evidence for the functional involvement of iron-sulfur redox centers on the acceptor side of the reaction center. Miller, M., Liu, X., Snyder, S.W., Thurnauer, M.C., Biggins, J. Biochemistry (1992) [Pubmed]
  14. Sepiapterin reductase producing L-threo-dihydrobiopterin from Chlorobium tepidum. Cho, S.H., Na, J.U., Youn, H., Hwang, C.S., Lee, C.H., Kang, S.O. Biochem. J. (1999) [Pubmed]
  15. Adduct formation between sulfite and the flavin of phototrophic bacterial flavocytochromes c. Kinetics of sequential bleach, recolor, and rebleach of flavin as a function of pH. Meyer, T.E., Bartsch, R.G., Cusanovich, M.A. Biochemistry (1991) [Pubmed]
  16. Femtosecond energy transfer and spectral equilibration in bacteriochlorophyll a--protein antenna trimers from the green bacterium Chlorobium tepidum. Savikhin, S., Zhou, W., Blankenship, R.E., Struve, W.S. Biophys. J. (1994) [Pubmed]
  17. Molecular cloning and nucleotide sequence of the porphobilinogen deaminase gene, hemC, from Chlorobium vibrioforme. Majumdar, D., Wyche, J.H. Curr. Microbiol. (1997) [Pubmed]
  18. A reverse KREBS cycle in photosynthesis: consensus at last. Buchanan, B.B., Arnon, D.I. Photosyn. Res. (1990) [Pubmed]
  19. Characterization of an improved reaction center preparation from the photosynthetic green sulfur bacterium Chlorobium containing the FeS centers FA and FB and a bound cytochrome subunit. Feiler, U., Nitschke, W., Michel, H. Biochemistry (1992) [Pubmed]
  20. Removal of hydrogen sulfide by Chlorobium thiosulfatophilum in immobilized-cell and sulfur-settling free-cell recycle reactors. Kim, B.W., Chang, H.N. Biotechnol. Prog. (1991) [Pubmed]
  21. Glutamyl-tRNA reductase of Chlorobium vibrioforme is a dissociable homodimer that contains one tightly bound heme per subunit. Srivastava, A., Beale, S.I. J. Bacteriol. (2005) [Pubmed]
  22. Chlorobium tepidum mutant lacking bacteriochlorophyll c made by inactivation of the bchK gene, encoding bacteriochlorophyll c synthase. Frigaard, N.U., Voigt, G.D., Bryant, D.A. J. Bacteriol. (2002) [Pubmed]
  23. Phylogeny of green sulfur bacteria on the basis of gene sequences of 16S rRNA and of the Fenna-Matthews-Olson protein. Alexander, B., Andersen, J.H., Cox, R.P., Imhoff, J.F. Arch. Microbiol. (2002) [Pubmed]
  24. Characterization of csmB genes, encoding a 7.5-kDa protein of the chlorosome envelope, from the green sulfur bacteria Chlorobium vibrioforme 8327D and Chlorobium tepidum. Chung, S., Bryant, D.A. Arch. Microbiol. (1996) [Pubmed]
  25. Malate dehydrogenase from the mesophile Chlorobium vibrioforme and from the mild thermophile Chlorobium tepidum: molecular cloning, construction of a hybrid, and expression in Escherichia coli. Naterstad, K., Lauvrak, V., Sirevåg, R. J. Bacteriol. (1996) [Pubmed]
  26. Malate dehydrogenase from Chlorobium vibrioforme, Chlorobium tepidum, and Heliobacterium gestii: purification, characterization, and investigation of dinucleotide binding by dehydrogenases by use of empirical methods of protein sequence analysis. Charnock, C., Refseth, U.H., Sirevåg, R. J. Bacteriol. (1992) [Pubmed]
 
WikiGenes - Universities