The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Alterations in insulin-like growth factor (IGF)-dependent IGF-binding protein-4 proteolysis in transformed osteoblastic cells.

Insulin-like growth factor (IGF)- binding protein-4 (IGFBP-4) is secreted by a variety of osteoblastic cells and appears to be an integral component of bone cell physiology. We have previously reported that normal human osteoblast-like ( hOB) cells secrete IGFBP-4 as well as a novel IGFBP-4 protease, which requires IGF for functional activity. In this study we assessed the IGFBP-4/IGFBP-4 protease system in transformed osteoblastic cells by Western ligand blotting and cell-free IGFBP-4 protease assays. Simian virus-40-immortalized hOB cells (HOBIT), human osteosarcoma cells (TE-85), and rat osteosarcoma cells (UMR 106-01, ROS 17/2.8) secrete IGFBP-4. In contrast to the rapid and dramatic proteolysis in hOB medium, medium conditioned by these cells had no apparent IGFBP-4 protease activity when assayed with exogenous IGF-II in culture or under cell-free conditions. Assayed in the presence of exogenous protease. HOBIT cells, but not the osteosarcoma cell lines, appeared to produce a cycloheximide-sensitive inhibitor of the IGFBP-4 proteolytic reaction. Transient cell transformation induced by incubating human osteoblasts transfected with a temperature-sensitive mutant of simian virus-40 T-antigen at the permissive temperature or by treating hOB cells with phorbol ester tumor promoters also resulted in inhibition of IGF-dependent IGFBP-4 proteolysis. Inhibition was observed if phorbol ester was added to the cultures at the time of medium change or after the protease had been expressed and secreted. Differences in IGFBP-4 proteolysis could not be accounted for by changes in IGFBP-4 messenger RNA expression or substrate levels. These data suggest that transformation is associated with alterations in the IGFBP-4/IGFBP-4 protease system in osteoblastic cells. Normal human osteoblasts secrete an IGF-dependent IGFBP-4 protease. The induction of an inhibitor of the IGF-dependent IGFBP-4 proteolytic reaction may be associated with early transformation processes. Fully tumorigenic bone cells expressed neither IGFBP-4 protease nor protease inhibitor activity.[1]

References

 
WikiGenes - Universities