The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Structural analysis of porcine brain nitric oxide synthase reveals a role for tetrahydrobiopterin and L-arginine in the formation of an SDS-resistant dimer.

Nitric oxide synthases (NOSs), which catalyze the formation of the ubiquitous biological messenger molecule nitric oxide, represent unique cytochrome P-450s, containing reductase and mono-oxygenase domains within one polypeptide and requiring tetrahydrobiopterin as cofactor. To investigate whether tetrahydrobiopterin functions as an allosteric effector of NOS, we have analyzed the effect of the pteridine on the conformation of neuronal NOS purified from porcine brain by means of circular dichroism, velocity sedimentation, dynamic light scattering and SDS-polyacrylamide gel electrophoresis. We report for the first time the secondary structure of NOS, showing that the neuronal isozyme contains 30% alpha-helix, 14% antiparallel beta-sheet, 7% parallel beta-sheet, 19% turns and 31% other structures. The secondary structure of neuronal NOS was neither modulated nor stabilized by tetrahydrobiopterin, and the pteridine did not affect the quaternary structure of the protein, which appears to be an elongated homodimer with an axial ratio of approximately 20/1 under native conditions. Low temperature SDS-polyacrylamide gel electrophoresis revealed that tetrahydrobiopterin and L-arginine synergistically convert neuronal NOS into an exceptionally stable, non-covalently linked homodimer surviving in 2% SDS and 5% 2-mercaptoethanol. Ligand-induced formation of an SDS-resistant dimer is unprecedented and suggests a novel role for tetrahydrobiopterin and L-arginine in the allosteric regulation of protein subunit interactions.[1]


WikiGenes - Universities