Steady-state in vivo glutamate dehydrogenase activity in rat brain measured by 15N NMR.
The in vivo activity of glutamate dehydrogenase ( GDH) in the direction of reductive amination was measured in rat brain at steady-state concentrations of brain ammonia and glutamate after intravenous infusion of the substrate 15NH4+. The in vivo rate was determined from the steady-state fractional 15N enrichment of brain ammonia, measured by selective observation of 15NH4+ protons in brain extract by 1H-15N heteronuclear multiple-quantum coherence transfer NMR, and the rate of increase of brain [15N]glutamate and [2-15N]glutamine measured by 15N NMR. The in vivo GDH activity was 0.76-1.17 mumol/h/g, and 1.1-1.2 mumol/h/g at 1.0 +/- 0.17 mumol/g. Comparison of the observed in vivo GDH activity with the in vivo rates of glutamine synthesis and of phosphate- activated glutaminase suggests that, under mild hyperammonemia, GDH-catalyzed de novo synthesis can provide a minimum of 19% of the glutamate pool that is recycled from neurons to astrocytes through the glutamate-glutamine cycle.[1]References
- Steady-state in vivo glutamate dehydrogenase activity in rat brain measured by 15N NMR. Kanamori, K., Ross, B.D. J. Biol. Chem. (1995) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg