The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Resistance to mecillinam produced by the co-operative action of mutations affecting lipopolysaccharide, spoT, and cya or crp genes of Salmonella typhimurium.

Lipopolysaccharide (LPS), spoT, and cya or crp mutations individually do not affect the minimum inhibitory concentration of mecillinam on Salmonella typhimurium. However, when mutations of two of these types were combined in the same strain, high-level resistance appeared, and increased even further when all three types of mutations were present. Most mutations affecting LPS (rfa, rfb, rfc) showed this behaviour, although to different degrees. The highest resistance to mecillinam was caused by galE and rfc mutations whereas almost no effect was noticed with rfaB or rfaK mutations. This phenomenon appears to be specific for mecillinam since none of several other antibiotics elicited it. Reduction of guanosine tetraphosphate (ppGpp) levels by introduction of a relA mutation did not significantly affect the MIC of mecillinam on strains carrying different combinations of spoT, galE, and cya or crp mutations. All the strains produced spherical cells in medium with a low concentration (0.05 microgram ml-1) of the antibiotic. These results suggest that the antibacterial action of mecillinam on S. typhimurium is somehow dependent on the interaction of LPS, cyclic AMP/ cyclic AMP receptor protein (cAMP/CRP), and SpoT. The reported resistance to mecillinam of cya and crp mutants of Escherichia coli K-12 is probably due to the natural LPS defectiveness of this strain.[1]

References

 
WikiGenes - Universities