The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

cyaA  -  adenylate cyclase

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK3800, JW3778, cya
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of cyaA


High impact information on cyaA

  • These results suggest that the synthesis of both cyclic GMP and cyclic AMP is mediated by the same enzyme, adenylate cyclase, Interestingly, a reciprocal effect of glucose starvation was observed on the accumulation of both cyclic nucleotides [5].
  • Fourth, the characteristic of a strain overproducing cyclic GMP was co-transduced with the cya locus [5].
  • A possible involvement of cya gene in the synthesis of cyclic guanosine 3':5'-monophosphate in E. coli [5].
  • In order to identify molecular features of the calmodulin (CaM) activated adenylate cyclase of Bordetella pertussis, a truncated cya gene was fused after the 459th codon in frame with the alpha-lacZ' gene fragment and expressed in Escherichia coli [6].
  • The phosphoenolpyruvate:glucose phosphotransferase system (PTS) of Salmonella typhimurium is involved both in glucose transport and in the regulation and synthesis of adenylate cyclase and several transport systems [7].

Chemical compound and disease context of cyaA


Biological context of cyaA


Anatomical context of cyaA


Associations of cyaA with chemical compounds

  • We found that the glucose effect in the lacL8UV5 cells was no longer observed when either the crp or the cya gene was disrupted [16].
  • Cyclic AMP exerted a strong negative control on the biosynthesis and of this enzyme for which the integrity of both the cya and the crp gene functions was necessary [17].
  • For the translational fusion (in a cya crp* genetic background) to be repressed by glycerol, a drop to pH 5 of the growth medium was necessary [18].
  • This indicated that enzyme I or phosphorylated histidine-containing phosphotransferase protein in addition to its role in phosphorylating enzyme IIIGlc, is involved in adenylate cyclase (AC) activation or cAMP excretion [19].
  • When grown on glucose and casamino acids growth could be stimulated by adenine and hypoxanthine nucleosides; these results suggest an impaired nitrogen metabolism in cya and crp mutants [20].

Regulatory relationships of cyaA

  • In a strain carrying multiple copies of the crp gene and overproducing CAP the activity of adenylate cyclase is severely inhibited, although the in vivo rate of cAMP synthesis is similar to the parental strain [21].

Other interactions of cyaA

  • One class consisted of primary site revertants; a second class was pseudorevertants that had phenotypically reverted to wild type but retaining the original cya mutant and the third class of revertants, designated csm, were pseudorevertants hypersensitive to exogenous cAMP [22].
  • The dapF gene was localized in the 85-min region of the E. coli chromosome between cya and uvrD [23].
  • S. typhimurium crr mutants are deficient in enzyme III glucose, which is a component of the glucose transport system, and a regulator of adenylate cyclase [24].
  • In a CAP-deficient strain, the presence of an hns mutation results in a strong reduction in the amount of cAMP, due to a decrease in adenylate cyclase activity [25].

Analytical, diagnostic and therapeutic context of cyaA


  1. Purification and characterization of adenylate cyclase from Escherichia coli K12. Yang, J.K., Epstein, W. J. Biol. Chem. (1983) [Pubmed]
  2. Comparative analysis of the cya locus in enterobacteria and related gram-negative facultative anaerobes. Trotot, P., Sismeiro, O., Vivarès, C., Glaser, P., Bresson-Roy, A., Danchin, A. Biochimie (1996) [Pubmed]
  3. Resistance to mecillinam produced by the co-operative action of mutations affecting lipopolysaccharide, spoT, and cya or crp genes of Salmonella typhimurium. Antón, D.N. Mol. Microbiol. (1995) [Pubmed]
  4. Structure and evolution of bacterial adenylate cyclase: comparison between Escherichia coli and Erwinia chrysanthemi. Danchin, A., Lenzen, G. Second Messengers Phosphoproteins (1988) [Pubmed]
  5. A possible involvement of cya gene in the synthesis of cyclic guanosine 3':5'-monophosphate in E. coli. Shibuya, M., Takebe, Y., Kaziro, Y. Cell (1977) [Pubmed]
  6. Identification of residues essential for catalysis and binding of calmodulin in Bordetella pertussis adenylate cyclase by site-directed mutagenesis. Glaser, P., Elmaoglou-Lazaridou, A., Krin, E., Ladant, D., Bârzu, O., Danchin, A. EMBO J. (1989) [Pubmed]
  7. Molecular cloning, sequencing, and expression of the crr gene: the structural gene for IIIGlc of the bacterial PEP:glucose phosphotransferase system. Nelson, S.O., Schuitema, A.R., Benne, R., van der Ploeg, L.H., Plijter, J.S., Aan, F., Postma, P.W. EMBO J. (1984) [Pubmed]
  8. Indirect role of adenylate cyclase and cyclic AMP in chemotaxis to phosphotransferase system carbohydrates in Escherichia coli K-12. Vogler, A.P., Lengeler, J.W. J. Bacteriol. (1987) [Pubmed]
  9. Fosmidomycin resistance in adenylate cyclase deficient (cya) mutants of Escherichia coli. Sakamoto, Y., Furukawa, S., Ogihara, H., Yamasaki, M. Biosci. Biotechnol. Biochem. (2003) [Pubmed]
  10. Regulation of adenylate cyclase synthesis in Escherichia coli: nucleotide sequence of the control region. Roy, A., Haziza, C., Danchin, A. EMBO J. (1983) [Pubmed]
  11. Expression of cDNAs for G proteins in Escherichia coli. Two forms of Gs alpha stimulate adenylate cyclase. Graziano, M.P., Casey, P.J., Gilman, A.G. J. Biol. Chem. (1987) [Pubmed]
  12. Site-directed mutagenic alteration of potential active-site residues of the A subunit of Escherichia coli heat-labile enterotoxin. Evidence for a catalytic role for glutamic acid 112. Cieplak, W., Mead, D.J., Messer, R.J., Grant, C.C. J. Biol. Chem. (1995) [Pubmed]
  13. Mechanism of activation adenylate cyclase in vitro by polymyxin-released, heat-labile enterotoxin of Escherichia coli. Gill, D.M., Evan, D.J., Evans, D.G. J. Infect. Dis. (1976) [Pubmed]
  14. Bacterial expression of Chinese hamster regulatory type-I and catalytic subunits of cyclic AMP-dependent protein kinase and mutational analysis of the type-I regulatory subunit. Gosse, M.E., Fleischmann, R., Marshall, M., Wang, N., Garges, S., Gottesman, M.M. Biochem. J. (1994) [Pubmed]
  15. Cyclic nucleotides and vasoactive intestinal peptide production in a rabbit model of Escherichia coli septicemia. Broner, C.W., O'Dorisio, M.S., Rosenberg, R.B., O'Dorisio, T.M. Am. J. Med. Sci. (1995) [Pubmed]
  16. cAMP receptor protein-cAMP plays a crucial role in glucose-lactose diauxie by activating the major glucose transporter gene in Escherichia coli. Kimata, K., Takahashi, H., Inada, T., Postma, P., Aiba, H. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  17. The acid phosphatase with optimum pH of 2.5 of Escherichia coli. Physiological and Biochemical study. Dassa, E., Cahu, M., Desjoyaux-Cherel, B., Boquet, P.L. J. Biol. Chem. (1982) [Pubmed]
  18. Glycerol-3-phosphate-mediated repression of malT in Escherichia coli does not require metabolism, depends on enzyme IIAGlc and is mediated by cAMP levels. Eppler, T., Boos, W. Mol. Microbiol. (1999) [Pubmed]
  19. Cyclic AMP synthesis in Escherichia coli strains bearing known deletions in the pts phosphotransferase operon. Lévy, S., Zeng, G.Q., Danchin, A. Gene (1990) [Pubmed]
  20. Multiple regulation of nucleoside catabolizing enzymes in Escherichia coli: effects of 3:5' cyclic AMP and CRP protein. Hammer-Jespersen, K., Nygaard, P. Mol. Gen. Genet. (1976) [Pubmed]
  21. Multiple regulation of the activity of adenylate cyclase in Escherichia coli. Joseph, E., Bernsley, C., Guiso, N., Ullmann, A. Mol. Gen. Genet. (1982) [Pubmed]
  22. Isolation and characterization of cAMP suppressor mutants of Escherichia coli K12. Melton, T., Snow, L.L., Freitag, C.S., Dobrogosz, W.J. Mol. Gen. Genet. (1981) [Pubmed]
  23. Molecular cloning, characterization, and chromosomal localization of dapF, the Escherichia coli gene for diaminopimelate epimerase. Richaud, C., Higgins, W., Mengin-Lecreulx, D., Stragier, P. J. Bacteriol. (1987) [Pubmed]
  24. Evidence against direct involvement of cyclic GMP or cyclic AMP in bacterial chemotactic signaling. Tribhuwan, R.C., Johnson, M.S., Taylor, B.L. J. Bacteriol. (1986) [Pubmed]
  25. The regulation of Enzyme IIA(Glc) expression controls adenylate cyclase activity in Escherichia coli. Krin, E., Sismeiro, O., Danchin, A., Bertin, P.N. Microbiology (Reading, Engl.) (2002) [Pubmed]
  26. The complete nucleotide sequence of the adenylate cyclase gene of Escherichia coli. Aiba, H., Mori, K., Tanaka, M., Ooi, T., Roy, A., Danchin, A. Nucleic Acids Res. (1984) [Pubmed]
  27. Construction and characterization of avian Escherichia coli cya crp mutants. Peighambari, S.M., Gyles, C.L. Avian Dis. (1998) [Pubmed]
  28. Translational efficiency of the Escherichia coli adenylate cyclase gene: mutating the UUG initiation codon to GUG or AUG results in increased gene expression. Reddy, P., Peterkofsky, A., McKenney, K. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  29. The calmodulin-sensitive adenylate cyclase of Bordetella pertussis: cloning and expression in Escherichia coli. Glaser, P., Ladant, D., Sezer, O., Pichot, F., Ullmann, A., Danchin, A. Mol. Microbiol. (1988) [Pubmed]
WikiGenes - Universities