The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Pleiotropic effects of regulatory ros mutants of Agrobacterium radiobacter and their interaction with Fe and glucose.

Four exo mutants of Agrobacterium radiobacter, defective in the synthesis of acidic exopolysaccharide were complemented by a gene from that species, which is similar to the transcriptional regulator, ros, of A. tumefaciens. It was confirmed that this A. radiobacter gene, which we term rosAR, like ros, repressed its own transcription as well as that of virC and virD, two loci involved in tumorigenesis. The sequence of RosAR suggested that it might bind to a transition metal and its repressor abilities were shown to require Fe in the medium; repression was also enhanced with increasing levels of glucose. Certain rosAR mutants, in which its 3' end was removed were dominant; i.e., when plasmids containing such mutant forms of the gene were introduced into wild-type A. radiobacter, the transconjugants were nonmucoid. Such effects were also seen in a wide range of bacteria, including Escherichia coli and Xanthomonas. Several mutants that were complementd by rosAR also accumulated protoporphyrin, suggesting a defect in haem synthesis.[1]

References

  1. Pleiotropic effects of regulatory ros mutants of Agrobacterium radiobacter and their interaction with Fe and glucose. Brightwell, G., Hussain, H., Tiburtius, A., Yeoman, K.H., Johnston, A.W. Mol. Plant Microbe Interact. (1995) [Pubmed]
 
WikiGenes - Universities