Structural and mechanistic studies of galactoside acetyltransferase, the Escherichia coli LacA gene product.
Escherichia coli galactoside acetyltransferase (GAT) is a member of a large family of acetyltransferases that O-acetylate dissimilar substrates but share limited sequence homology. Steady-state kinetic analysis of over-expressed GAT demonstrated that it accepted a range of substrates, including glucosides and lactosides which were acetylated at rates comparable to galactosides. GAT was shown to be a trimeric acetyltransferase by cross-linking with dimethyl suberimidate. Fluorometric analysis of coenzyme A binding showed that there is a fluorescence quench associated with acetyl-CoA binding whereas CoA has no effect. This difference was exploited to measure dissociation rates for both CoA and acetyl-CoA by stopped-flow fluorometry. The rate of dissociation of CoA (2500 s-1) is at least 170-fold faster than kcat for any substrate tested. The fluorescence response to acetyl-CoA binding is entirely due to Trp-139 since replacement by phenylalanine completely abolished the fluorescence quench. Treatment of GAT by [14C]iodoacetamide resulted in complete inactivation of the enzyme and the incorporation of label into histidyl and cysteinyl residues to approximately equal extents. Following replacement of His-115 by alanine, label was incorporated solely into cysteinyl residues. Furthermore, the substitution results in an 1800-fold decrease in kcat suggesting that His-115 has an important catalytic role in GAT.[1]References
- Structural and mechanistic studies of galactoside acetyltransferase, the Escherichia coli LacA gene product. Lewendon, A., Ellis, J., Shaw, W.V. J. Biol. Chem. (1995) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg