The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

ECs2831  -  acetyltransferase

Escherichia coli O157:H7 str. Sakai

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of ECs2831

 

High impact information on ECs2831

 

Chemical compound and disease context of ECs2831

 

Biological context of ECs2831

  • A 537-base cDNA encoding a portion of Saccharomyces cerevisiae dihydrolipoamide acetyltransferase (acetyl-CoA:dihydrolipoamide S-acetyltransferase, EC 2.3.1.12) was isolated from a lambda gt11 yeast cDNA library by immunoscreening [9].
  • It is shown that the acetyltransferase activity of the full-length protein is abolished once trapped within heterotrimers formed in presence of the truncated protein, suggesting that this enzyme activity absolutely requires a trimeric organization and that the catalytic site involves regions of contact between adjacent monomers [16].
  • The accompanying reductive acetylation of the lipoyl group attached to the dihydrolipoyl acetyltransferase (E2) component involves weak, transient but specific interactions between E1 and the lipoyl domain of the E2 polypeptide chain [17].
  • The aacC1 gene encoding the 3-N-aminoglycoside acetyltransferase [AAC(3)-I] was cloned from enteric plasmid pJR88, and its deoxyribonucleotide sequence was determined [18].
  • This enzyme is unique in that it is composed of two separable modification domains, and although a number of studies have been conducted on the acetyltransferase and phosphotransferase activities in isolation, little is known about the role and impact of domain interactions on antibiotic resistance [19].
 

Anatomical context of ECs2831

 

Associations of ECs2831 with chemical compounds

  • Within 2 min of stimulation of neutrophils with 10(-6) M PAF, the 7-fold increase in acetyltransferase activity was coincident with substantial PAF synthesis (as measured by [3H]acetate incorporation into PAF), which was 14% of the PAF synthesis induced by the Ca2+ ionophore A23187 at 10(-5) M [20].
  • Assembly and full functionality of recombinantly expressed dihydrolipoyl acetyltransferase component of the human pyruvate dehydrogenase complex [23].
  • These results strongly support the view that the three long (alanine + proline)-rich regions of the dihydrolipoyl acetyltransferase chains are exposed to solvent and enjoy substantial conformational flexibility in the enzyme complex [24].
  • GAT was shown to be a trimeric acetyltransferase by cross-linking with dimethyl suberimidate [25].
  • The biosynthesis of diacetamidobacillosamine is anticipated to involve a sugar nucleotide C6 dehydratase, a C4 aminotransferase and an acetyltransferase [26].
 

Analytical, diagnostic and therapeutic context of ECs2831

References

  1. Requirements of acetyl phosphate for the binding protein-dependent transport systems in Escherichia coli. Hong, J.S., Hunt, A.G., Masters, P.S., Lieberman, M.A. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  2. Identification of the satA gene encoding a streptogramin A acetyltransferase in Enterococcus faecium BM4145. Rende-Fournier, R., Leclercq, R., Galimand, M., Duval, J., Courvalin, P. Antimicrob. Agents Chemother. (1993) [Pubmed]
  3. Cloning and characterization of a 3-N-aminoglycoside acetyltransferase gene, aac(3)-Ib, from Pseudomonas aeruginosa. Schwocho, L.R., Schaffner, C.P., Miller, G.H., Hare, R.S., Shaw, K.J. Antimicrob. Agents Chemother. (1995) [Pubmed]
  4. Characterization of the chromosomal aac(6')-Ij gene of Acinetobacter sp. 13 and the aac(6')-Ih plasmid gene of Acinetobacter baumannii. Lambert, T., Gerbaud, G., Courvalin, P. Antimicrob. Agents Chemother. (1994) [Pubmed]
  5. Variant Salmonella genomic island 1 antibiotic resistance gene cluster containing a novel 3'-N-aminoglycoside acetyltransferase gene cassette, aac(3)-Id, in Salmonella enterica serovar newport. Doublet, B., Weill, F.X., Fabre, L., Chaslus-Dancla, E., Cloeckaert, A. Antimicrob. Agents Chemother. (2004) [Pubmed]
  6. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Robicsek, A., Strahilevitz, J., Jacoby, G.A., Macielag, M., Abbanat, D., Park, C.H., Bush, K., Hooper, D.C. Nat. Med. (2006) [Pubmed]
  7. Structure and ligand of a histone acetyltransferase bromodomain. Dhalluin, C., Carlson, J.E., Zeng, L., He, C., Aggarwal, A.K., Zhou, M.M. Nature (1999) [Pubmed]
  8. Repeating functional domains in the pyruvate dehydrogenase multienzyme complex of Escherichia coli. Packman, L.C., Hale, G., Perham, R.N. EMBO J. (1984) [Pubmed]
  9. Cloning and nucleotide sequence of the gene for dihydrolipoamide acetyltransferase from Saccharomyces cerevisiae. Niu, X.D., Browning, K.S., Behal, R.H., Reed, L.J. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  10. Structure of chloramphenicol acetyltransferase at 1.75-A resolution. Leslie, A.G., Moody, P.C., Shaw, W.V. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  11. A novel acetyltransferase found in Saccharomyces cerevisiae Sigma1278b that detoxifies a proline analogue, azetidine-2-carboxylic acid. Shichiri, M., Hoshikawa, C., Nakamori, S., Takagi, H. J. Biol. Chem. (2001) [Pubmed]
  12. Active efflux of chloramphenicol in susceptible Escherichia coli strains and in multiple-antibiotic-resistant (Mar) mutants. McMurry, L.M., George, A.M., Levy, S.B. Antimicrob. Agents Chemother. (1994) [Pubmed]
  13. Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis. Hewald, S., Linne, U., Scherer, M., Marahiel, M.A., Kämper, J., Bölker, M. Appl. Environ. Microbiol. (2006) [Pubmed]
  14. Two proteins with ornithine acetyltransferase activity show different functions in Streptomyces clavuligerus: Oat2 modulates clavulanic acid biosynthesis in response to arginine. de la Fuente, A., Martín, J.F., Rodríguez-García, A., Liras, P. J. Bacteriol. (2004) [Pubmed]
  15. Identification of the mycothiol synthase gene (mshD) encoding the acetyltransferase producing mycothiol in actinomycetes. Koledin, T., Newton, G.L., Fahey, R.C. Arch. Microbiol. (2002) [Pubmed]
  16. Dissection of the bifunctional Escherichia coli N-acetylglucosamine-1-phosphate uridyltransferase enzyme into autonomously functional domains and evidence that trimerization is absolutely required for glucosamine-1-phosphate acetyltransferase activity and cell growth. Pompeo, F., Bourne, Y., van Heijenoort, J., Fassy, F., Mengin-Lecreulx, D. J. Biol. Chem. (2001) [Pubmed]
  17. Protein-protein interaction revealed by NMR T(2) relaxation experiments: the lipoyl domain and E1 component of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Howard, M.J., Chauhan, H.J., Domingo, G.J., Fuller, C., Perham, R.N. J. Mol. Biol. (2000) [Pubmed]
  18. Development of a DNA probe from the deoxyribonucleotide sequence of a 3-N-aminoglycoside acetyltransferase [AAC(3)-I] resistance gene. Tenover, F.C., Phillips, K.L., Gilbert, T., Lockhart, P., O'Hara, P.J., Plorde, J.J. Antimicrob. Agents Chemother. (1989) [Pubmed]
  19. Domain-domain interactions in the aminoglycoside antibiotic resistance enzyme AAC(6')-APH(2''). Boehr, D.D., Daigle, D.M., Wright, G.D. Biochemistry (2004) [Pubmed]
  20. Platelet-activating factor (PAF) stimulates the PAF-synthesizing enzyme acetyl-CoA:1-alkyl-sn-glycero-3-phosphocholine O2-acetyltransferase and PAF synthesis in neutrophils. Doebber, T.W., Wu, M.S. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  21. An amplifiable and deletable chloramphenicol-resistance determinant of Streptomyces lividans 1326 encodes a putative transmembrane protein. Dittrich, W., Betzler, M., Schrempf, H. Mol. Microbiol. (1991) [Pubmed]
  22. Hamster monomorphic arylamine N-acetyltransferase: expression in Escherichia coli and purification. Bergstrom, C.P., Wagner, C.R., Ann, D.K., Hanna, P.E. Protein Expr. Purif. (1995) [Pubmed]
  23. Assembly and full functionality of recombinantly expressed dihydrolipoyl acetyltransferase component of the human pyruvate dehydrogenase complex. Yang, D., Song, J., Wagenknecht, T., Roche, T.E. J. Biol. Chem. (1997) [Pubmed]
  24. Conformational flexibility and folding of synthetic peptides representing an interdomain segment of polypeptide chain in the pyruvate dehydrogenase multienzyme complex of Escherichia coli. Radford, S.E., Laue, E.D., Perham, R.N., Martin, S.R., Appella, E. J. Biol. Chem. (1989) [Pubmed]
  25. Structural and mechanistic studies of galactoside acetyltransferase, the Escherichia coli LacA gene product. Lewendon, A., Ellis, J., Shaw, W.V. J. Biol. Chem. (1995) [Pubmed]
  26. Biochemical characterization of the Campylobacter jejuni Cj1294, a novel UDP-4-keto-6-deoxy-GlcNAc aminotransferase that generates UDP-4-amino-4,6-dideoxy-GalNAc. Obhi, R.K., Creuzenet, C. J. Biol. Chem. (2005) [Pubmed]
  27. Molecular characterization of the Acremonium chrysogenum cefG gene product: the native deacetylcephalosporin C acetyltransferase is not processed into subunits. Velasco, J., Gutierrez, S., Campoy, S., Martin, J.F. Biochem. J. (1999) [Pubmed]
  28. Plasmid-mediated high-level gentamicin resistance among enteric bacteria isolated from pet turtles in Louisiana. Díaz, M.A., Cooper, R.K., Cloeckaert, A., Siebeling, R.J. Appl. Environ. Microbiol. (2006) [Pubmed]
  29. Expression, purification and crystallization of enterococcus faecium streptogramin A acetyltransferase. Sugantino, M., Roderick, S.L. Acta Crystallogr. D Biol. Crystallogr. (2000) [Pubmed]
  30. Purification and properties of two gentamicin-modifying enzymes, coded by a single plasmid pPK237 originating from Pseudomonas aeruginosa. Angelatou, F., Litsas, S.B., Kontomichalou, P. J. Antibiot. (1982) [Pubmed]
 
WikiGenes - Universities