The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A major house dust mite allergen disrupts the immunoglobulin E network by selectively cleaving CD23: innate protection by antiproteases.

Asthma is a chronic life-threatening disease of worldwide importance. Although allergic asthma and related atopic conditions correlate strongly with immune sensitization to house dust mites, it is unclear why antigens from mites provoke such powerful allergic immune responses. We have characterized the protease activity of Der p I, the group I protease allergen of the house dust mite Dermatophagoides pteronyssinus, and here report that it cleaves the low-affinity immunoglobulin (Ig) E Fc receptor (CD23) from the surface of human B lymphocytes. Der p I selectively cleaves CD23 and has no effect on the expression of any other B cell surface molecules tested. We speculate that this loss of cell surface CD23 from IgE-secreting B cells may promote and enhance IgE immune responses by ablating an important feedback inhibitory mechanism that normally limits IgE synthesis. Furthermore, since soluble CD23 is reported to promote IgE production, fragments of CD23 released by Der p I may directly enhance the synthesis of IgE. alpha 1-Antiprotease, a pulmonary antiprotease, is also shown to inhibit the cleavage of CD23 by Der p I. This may be significant in the etiopathogenesis of asthma, because other indoor pollutants associated with asthma are known to potently inhibit this antiprotease. These data suggest that the proteolytic activity of Der p I, the group I allergen of the house dust mite D. pteronyssinus, is mechanistically linked to the potent allergenicity of house dust mites. Furthermore, inhibition of Der p I by alpha 1-antiprotease suggests a mechanism by which confounding factors, such as tobacco smoke, may act as a risk factor for allergic asthma.[1]

References

 
WikiGenes - Universities