The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The Shaker-like potassium channels of the mouse rod bipolar cell and their contributions to the membrane current.

RT PCR on mRNA from enzymatically dissociated, isolated bipolar cells showed that these neurons express the Shaker-like K+ channels Kv1.1, Kv1.2, and Kv1. 3. Immunohistochemical localization showed each channel to have a unique subcellular distribution: Kv1.1 immunoreactivity was detected in the dendrites and axons terminal, whereas Kv1.2 and Kv1.3 subunits were localized to the axon and the postsynaptic membrane of the rod ribbon synapse, respectively. Whole-cell patch-clamp recordings indicated that the activation voltage of the delayed rectifier current of the isolated bipolar cell and the inhibitory constants for current blockade by TEA, 4-AP, and Ba2+ were similar to these same properties measured for Kv1.1 expressed in oocytes. However, the TEA and 4-AP inhibitory constants for the bipolar cell current differed from the inhibitory constants for Kv1.2 or Kv1. 3. These results suggest that the current of the isolated rod bipolar cell is most similar to Kv1.1 but that all three channels may function in the intact retina to allow complex modulation of retinal synaptic signals.[1]

References

  1. The Shaker-like potassium channels of the mouse rod bipolar cell and their contributions to the membrane current. Klumpp, D.J., Song, E.J., Ito, S., Sheng, M.H., Jan, L.Y., Pinto, L.H. J. Neurosci. (1995) [Pubmed]
 
WikiGenes - Universities