The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Involvement of Ser-451 and Ser-452 in the catalysis of human gamma-glutamyl transpeptidase.

The serine residue required for catalysis of gamma-glutamyl transpeptidase was identified by site-specific mutagenesis of the conserved serine residues on the basis of sequence alignment of the light subunit of human, rat, pig and two bacterial enzymes. Recombinant human gamma-glutamyl transpeptidases with replacements of these serine residues by Ala were expressed using a baculovirus-insect cell system. Substitutions of Ala at Ser-385, -413 or -425 yielded almost fully active enzymes. However, substitutions of Ala at Ser-451 or -452 yielded enzymes that were only about 1% as active as the wild-type enzyme. Further, their double mutant is only 0.002% as active as the wild type. Kinetic analysis of transpeptidation using glycylglycine as acceptor indicates that the Vmax values of Ser-451 and -452 mutants are substantially decreased (to about 3% of the wild type); however, their Km values for L-gamma-glutamyl-p-nitroanilide as donor were only increased about 5 fold compared to that of the wild type. The double mutation of Ser-451 and -452 further decreased the Vmax value to only about 0.005% of the wild type, while this mutation produced only a minor effect (2-fold increase) on the Km value for the donor. The kinetic values for the hydrolysis reaction of L-gamma-glutamyl-p-nitroanilide in the mutants followed similar trends to those for transpeptidation. The rates of inactivation of Ser-451, -452 and their double mutant enzymes by acivicin, a potent inhibitor, were less than 1% that of the wild-type enzyme. The Ki value of the double mutant for L-serine as a competitive inhibitor of the gamma-glutamyl group is only 9 fold increased over that of the wild type, whereas the Ki for the serine-borate complex, which acts as an inhibitory transition-state analog, was more than 1,000 times higher than for the wild-type enzyme. These results suggest that both Ser-451 and -452 are located at the position able to interact with the gamma-glutamyl group and participate in catalysis, probably as nucleophiles or through stabilization of the transition state.[1]

References

  1. Involvement of Ser-451 and Ser-452 in the catalysis of human gamma-glutamyl transpeptidase. Ikeda, Y., Fujii, J., Anderson, M.E., Taniguchi, N., Meister, A. J. Biol. Chem. (1995) [Pubmed]
 
WikiGenes - Universities