Pharmacologic properties of the swelling-induced chloride current of dog atrial myocytes.
INTRODUCTION: Swelling-induced chloride currents may contribute to cardiac electrical activity and cell volume regulation. Identification of selective blockers would aid in understanding the functional contribution(s) of this current. METHODS AND RESULTS: Dog atrial cells were used to investigate the pharmacologic properties of the swelling-induced chloride current. Whole cell patch clamp was used. Swelling-induced chloride current was activated by osmotic stress. Initially, the chloride selectivity and calcium independence of the swelling-induced current in dog atrial cells was demonstrated. Subsequently, a number of putative chloride channel blockers were examined. Anthracene-9-carboxylic acid (1 mM) and dideoxyforskolin (100 microM) and extracellular cAMP (5 mM) were found to partially inhibit the swelling-induced chloride current (approximately 50%, 80%, and 10% inhibition, respectively). Niflumic acid (100 microM), nitrophenylpropylamino benzoate (NPPB; 10 to 40 microM), and (+) 2-[(2-cyclopentyl-6,7-dichloro-2,3-dihydro-2-methyl-1-oxy-1H-inden -5-yl)oxy d acetic acid (indanyloxyacetic acid; IAA-94; 100 microM) could fully inhibit the swelling-induced chloride current without decreasing cell size. DIDS (100 microM) and dinitrostilbene disulfonic acid (DNDS; 5 mM) fully inhibited outward currents but only partially inhibited inward current. CONCLUSIONS: Niflumic acid, IAA-94, and NPPB were identified as full blockers of cardiac swelling-induced chloride current. Nonspecific effects were identified for each of the full blockers. Experiments that use these agents as functional antagonists should be carefully designed and interpreted with caution.[1]References
- Pharmacologic properties of the swelling-induced chloride current of dog atrial myocytes. Sorota, S. J. Cardiovasc. Electrophysiol. (1994) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









