The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mechanistic insights provided by deletion of a flexible loop at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase.

To evaluate the functions of flexible loop 6 at the active site of Rhodospirillum rubrum D-ribulose-1,5-bisphosphate carboxylase/oxygenase, the loop was truncated by cassette mutagenesis, whereby seven residues of the twelve-residue loop were excised and replaced by two glycyl residues. The purified loop-deletion mutant was totally devoid of carboxylase activity, but retained substantial catalytic competency in the enolization of ribulose bisphosphate (the initial step in the overall carboxylase pathway) and in normal processing of the six-carbon carboxylated intermediate (the terminal steps in the overall carboxylase pathway). Hence, catalytic impairment resides predominantly at the stage of carboxylation of the initial enediol(ate), a conclusion compatible with mechanistic deductions derived from crystallographic analyses. A critical role of loop 6 in the stabilization of the transition state for carboxylation is reinforced by the findings that the loop-deletion mutant displays preferentially compromised affinity for an analogue of the carboxylated intermediate relative to ribulose bisphosphate and that the mutant converts the substrate to a dicarbonyl compound as a consequence of beta-elimination of phosphate from the initial enediol(ate).[1]

References

 
WikiGenes - Universities