The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Rhodospirillum

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Rhodospirillum

  • With the publication this year of the crystal structure of the LH2 complex from Rhodopseudomonas acidophila and the projection structure of the LH1 complex from Rhodospirillum rubrum, structural models now exist for all the components in the bacterial photosynthetic apparatus [1].
  • The nitrogenase-regulating enzymes dinitrogenase reductase ADP-ribosyltransferase (DRAT) and dinitrogenase reductase-activating glycohydrolase (DRAG), from Rhodospirillum rubrum, were shown to be sensitive to the redox status of the [Fe(4)S(4)](1+/2+) cluster of nitrogenase Fe protein from R. rubrum or Azotobacter vinelandii [2].
  • Ribulose-bisphosphate carboxylases from the cyanobacterium Synechococcus PCC 6301 and the bacterium Rhodospirillum rubrum also catalyzed pyruvate formation and to the same extent as the spinach enzyme [3].
  • Three crystal forms of the dimeric form of the enzyme ribulose-1,5-bisphosphate carboxylase from the photosynthetic bacterium Rhodospirillum rubrum have been obtained from the gene product expressed in Escherichia coli [4].
  • The sequence belongs to the same class as the published Alcaligenes and Rhodospirillum rubrum cytochrome c' squences, but the resemblance is not close [5].
 

High impact information on Rhodospirillum

  • Here we compare crystallographically independent subunits of the dimeric cytochrome c' from the bacterium Rhodospirillum molischianum to examine how lattice effects influence refined B-values [6].
  • Activating factor for the iron protein of nitrogenase from Rhodospirillum rubrum [7].
  • Here we describe the cloning and sequencing of the genes encoding the PYPs from E.halophila SL-1 (type strain) and Rhodospirillum salexigens [8].
  • Comparison of the crystal structures of the L2 and L8S8 forms of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum and spinach respectively, reveals a remarkable similarity in the overall architecture of the L2 building blocks in the two enzymes [9].
  • However, the PYP domain (Ppr-PYP) from the sensor histidine kinase Ppr in Rhodospirillum centenum, which regulates the catalytic activity of Ppr by blue light absorption, may allow such issues to be addressed [10].
 

Chemical compound and disease context of Rhodospirillum

  • An inactive, Ni-deficient form of carbon monoxide (CO) dehydrogenase [carbon-monoxide:(acceptor) oxidoreductase; EC 1.2.99.2], designated apo-CO dehydrogenase, accumulated in Rhodospirillum rubrum when cells were grown in the absence of Ni and treated with CO [11].
  • Covalent modification of the iron protein of nitrogenase from Rhodospirillum rubrum by adenosine diphosphoribosylation of a specific arginine residue [12].
  • During the activation of the inactive dinitrogenase reductase from Rhodospirillum rubrum, an adenine-like molecules is lost and phosphate is found on both active and inactive forms of the protein [13].
  • We recently showed that in the LH1 complex of the purple bacterium Rhodospirillum rubrum, which is rather inefficient in carotenoid-to-BChl energy transfer, a third additional carotenoid excited singlet state is formed [14].
  • This gene is evolutionarily conserved and shows significant amino acid homologies to mouse and human purine nucleoside phosphorylases and to a hypothetical 25.8-kDa protein in the pet gene (coding for cytochrome bc1 complex) region of Rhodospirillum rubrum [15].
 

Biological context of Rhodospirillum

 

Anatomical context of Rhodospirillum

 

Gene context of Rhodospirillum

  • This vector was utilized for the construction of a cyanobacterial rbc null mutant in which the entire sequence comprising both rbc genes, was replaced by the Rhodospirillum rubrum rbcL gene linked to a chloramphenicol resistance gene [26].
  • We demonstrate, by modeling the structure using the highly homologous structure of LH2 from Rhodospirillum molischianum, that it has the minimal size for BChl binding [27].
  • Additionally, we have compared the self-assembly of sphbeta31 and LH1beta24 with BChls and discovered that the association enthalpies and entropies of both species are similar to those measured for native LH1 from Rhodospirillum rubrum [27].
  • We propose that Rhodospirillum rubrum is a naturally occurring bchP mutant and that an insertion mutation may have been the initial cause of a partial loss of function [28].
  • The low-lying excited states of a B850 ring of Rhodospirillum (Rs.) molischianum are determined accurately by a semiempirical INDO/S method [29].
 

Analytical, diagnostic and therapeutic context of Rhodospirillum

References

  1. Light-harvesting mechanisms in purple photosynthetic bacteria. Isaacs, N.W., Cogdell, R.J., Freer, A.A., Prince, S.M. Curr. Opin. Struct. Biol. (1995) [Pubmed]
  2. Regulation of dinitrogenase reductase ADP-ribosyltransferase and dinitrogenase reductase-activating glycohydrolase by a redox-dependent conformational change of nitrogenase Fe protein. Halbleib, C.M., Zhang, Y., Ludden, P.W. J. Biol. Chem. (2000) [Pubmed]
  3. Pyruvate is a by-product of catalysis by ribulosebisphosphate carboxylase/oxygenase. Andrews, T.J., Kane, H.J. J. Biol. Chem. (1991) [Pubmed]
  4. New crystal forms of ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. Schneider, G., Brändén, C.I., Lorimer, G. J. Mol. Biol. (1986) [Pubmed]
  5. The amino acid sequence of cytochrome c' from the purple sulphur bacterium Chromatium vinosum. Ambler, R.P., Daniel, M., Meyer, T.E., Bartsch, R.G., Kamen, M.D. Biochem. J. (1979) [Pubmed]
  6. Lattice mobility and anomalous temperature factor behaviour in cytochrome c'. Finzel, B.C., Salemme, F.R. Nature (1985) [Pubmed]
  7. Activating factor for the iron protein of nitrogenase from Rhodospirillum rubrum. Ludden, P.W., Burris, R.H. Science (1976) [Pubmed]
  8. The xanthopsins: a new family of eubacterial blue-light photoreceptors. Kort, R., Hoff, W.D., Van West, M., Kroon, A.R., Hoffer, S.M., Vlieg, K.H., Crielaand, W., Van Beeumen, J.J., Hellingwerf, K.J. EMBO J. (1996) [Pubmed]
  9. Comparison of the crystal structures of L2 and L8S8 Rubisco suggests a functional role for the small subunit. Schneider, G., Knight, S., Andersson, I., Brändén, C.I., Lindqvist, Y., Lundqvist, T. EMBO J. (1990) [Pubmed]
  10. Crystal structure of a photoactive yellow protein from a sensor histidine kinase: conformational variability and signal transduction. Rajagopal, S., Moffat, K. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  11. Nickel-deficient carbon monoxide dehydrogenase from Rhodospirillum rubrum: in vivo and in vitro activation by exogenous nickel. Bonam, D., McKenna, M.C., Stephens, P.J., Ludden, P.W. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  12. Covalent modification of the iron protein of nitrogenase from Rhodospirillum rubrum by adenosine diphosphoribosylation of a specific arginine residue. Pope, M.R., Murrell, S.A., Ludden, P.W. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  13. Removal of an adenine-like molecule during activation of dinitrogenase reductase from Rhodospirillum rubrum. Ludden, P.W., Burris, R.H. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  14. An alternative carotenoid-to-bacteriochlorophyll energy transfer pathway in photosynthetic light harvesting. Papagiannakis, E., Kennis, J.T., van Stokkum, I.H., Cogdell, R.J., van Grondelle, R. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  15. Construction of a 2.8-megabase yeast artificial chromosome contig and cloning of the human methylthioadenosine phosphorylase gene from the tumor suppressor region on 9p21. Olopade, O.I., Pomykala, H.M., Hagos, F., Sveen, L.W., Espinosa, R., Dreyling, M.H., Gursky, S., Stadler, W.M., Le Beau, M.M., Bohlander, S.K. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  16. 2-(4-Bromoacetamido)anilino-2-deoxypentitol 1,5-bisphosphate, a new affinity label for ribulose bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. Determination of reaction parameters and characterization of an active site peptide. Herndon, C.S., Hartman, F.C. J. Biol. Chem. (1984) [Pubmed]
  17. Identification of critical, conserved vicinal aspartate residues in mammalian and bacterial ADP-ribosylarginine hydrolases. Konczalik, P., Moss, J. J. Biol. Chem. (1999) [Pubmed]
  18. The interaction of 4-chloro-7-nitrobenzofurazan with Rhodospirillum rubrum chromatophores, their soluble F1-ATPase, and the isolated purified beta-subunit. Khananshvili, D., Gromet-Elhanan, Z. J. Biol. Chem. (1983) [Pubmed]
  19. Partition kinetics of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum. Jaworowski, A., Rose, I.A. J. Biol. Chem. (1985) [Pubmed]
  20. Deletion of a B800-850 light-harvesting complex in Rhodospirillum molischianum DSM119 leads to "revertants" expressing a B800-820 complex: insights into pigment binding. Sauer, P.R., Lottspeich, F., Unger, E., Mentele, R., Michel, H. Biochemistry (1996) [Pubmed]
  21. Surface-enhanced resonance Raman scattering spectroscopy of bacterial photosynthetic membranes. The carotenoid of Rhodospirillum rubrum. Picorel, R., Holt, R.E., Cotton, T.M., Seibert, M. J. Biol. Chem. (1988) [Pubmed]
  22. Component of the Rhodospirillum centenum photosensory apparatus with structural and functional similarity to methyl-accepting chemotaxis protein chemoreceptors. Jiang, Z.Y., Bauer, C.E. J. Bacteriol. (2001) [Pubmed]
  23. Cell-cycle-specific fluctuation in cytoplasmic membrane composition in aerobically grown Rhodospirillum rubrum. Myers, C.R., Collins, M.L. J. Bacteriol. (1987) [Pubmed]
  24. Formation and properties of hybrid photosynthetic F1-ATPases. Demonstration of different structural requirements for stimulation and inhibition by tentoxin. Tucker, W.C., Du, Z., Gromet-Elhanan, Z., Richter, M.L. Eur. J. Biochem. (2001) [Pubmed]
  25. Evidence for the stabilization of NADPH relative to NADP(+) on the dIII components of proton-translocating transhydrogenases from Homo sapiens and from Rhodospirillum rubrum by measurement of tryptophan fluorescence. Peake, S.J., Venning, J.D., Cotton, N.P., Jackson, J.B. Biochim. Biophys. Acta (1999) [Pubmed]
  26. Construction of a Synechocystis PCC6803 mutant suitable for the study of variant hexadecameric ribulose bisphosphate carboxylase/oxygenase enzymes. Amichay, D., Levitz, R., Gurevitz, M. Plant Mol. Biol. (1993) [Pubmed]
  27. Design of a minimal polypeptide unit for bacteriochlorophyll binding and self-assembly based on photosynthetic bacterial light-harvesting proteins. Noy, D., Dutton, P.L. Biochemistry (2006) [Pubmed]
  28. Rhodospirillum rubrum possesses a variant of the bchP gene, encoding geranylgeranyl-bacteriopheophytin reductase. Addlesee, H.A., Hunter, C.N. J. Bacteriol. (2002) [Pubmed]
  29. Low-lying excited states of light-harvesting system II in purple bacteria. Zhao, Y., Ng, M.F., Chen, G. Physical review. E, Statistical, nonlinear, and soft matter physics . (2004) [Pubmed]
  30. Functional analysis of the putative catalytic bases His-321 and Ser-368 of Rhodospirillum rubrum ribulose bisphosphate carboxylase/oxygenase by site-directed mutagenesis. Harpel, M.R., Larimer, F.W., Hartman, F.C. J. Biol. Chem. (1991) [Pubmed]
  31. A reaction center-light-harvesting 1 complex (RC-LH1) from a Rhodospirillum rubrum mutant with altered esterifying pigments: characterization by optical spectroscopy and cryo-electron microscopy. Qian, P., Addlesee, H.A., Ruban, A.V., Wang, P., Bullough, P.A., Hunter, C.N. J. Biol. Chem. (2003) [Pubmed]
  32. The contribution of the carotenoid to the visible circular dichroism of the light-harvesting antenna of Rhodospirillum rubrum. Lozano, R.M., Fernández-Cabrera, C., Ramírez, J.M. Biochem. J. (1990) [Pubmed]
  33. Nitrogenase in the archaebacterium Methanosarcina barkeri 227. Lobo, A.L., Zinder, S.H. J. Bacteriol. (1990) [Pubmed]
  34. Carbon monoxide dehydrogenase from Rhodospirillum rubrum. Bonam, D., Murrell, S.A., Ludden, P.W. J. Bacteriol. (1984) [Pubmed]
 
WikiGenes - Universities